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ABSTRACT - Objective: This study aimed to explore the potential prognostic value and immunoregulatory
roles of C-X-C motif chemokine ligand 10 (CXCL10) in ovarian cancer through bioinformatics analysis to identify
potential biomarkers for personalized immunotherapy strategies.

Materials and Methods: We integrated Genotype-Tissue Expression (GTEx) normal ovarian tissues (n=88)
and The Cancer Genome Atlas (TCGA) ovarian cancer samples (n=427) to screen differentially expressed genes
using DESeq2 (version 1.42.0) and limma (version 3.40.2) packages. Protein-protein interaction networks (PPI)
were constructed via Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape (version 3.10.1).
Survival analysis was performed with Kaplan-Meier method and pathway enrichment was analyzed through Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA).
Immune infiltration was assessed using Cell-type Identification by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT) algorithm. Validation was conducted using GEO datasets (GSE10971, GSE14407, GSE18520) and ex-
perimental verification through quantitative PCR (qPCR), Western blot, and Cell Counting Kit-8 (CCK-8) assays in
ovarian cancer cell lines.

Results: CXCL10 expression was significantly upregulated in ovarian cancer tissues compared to normal tissues
(p<0.001) and showed correlation with T-cell and macrophage infiltration (p<0.001). Patients with low CXCL10 ex-
pression had poor prognosis (HR < 1), while co-expression with immune checkpoint molecules programmed cell
death protein 1 (PDCD1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and forkhead box P3 (FOXP3)
was associated with longer survival. Functional enrichment analysis revealed that CXCL10 was significantly en-
riched in immune-related pathways including lymphocyte-mediated immune response and antigen presentation.
Correlation analysis demonstrated strong associations between CXCL10 and immune checkpoint genes including
PDCD1 and CTLA-4 (p<0.05). The time-dependent ROC analysis showed limited individual prognostic capability
with AUC values of 0.446 for CXCL10, 0.478 for PDCD1, 0.435 for TIGIT, and 0.455 for FOXP3. Experimental valida-
tion confirmed that CXCL10 overexpression inhibited A2780 and SKOV3 cell proliferation (p<0.01) and enhanced
the efficacy of anti-PD-1 antibodies.

Conclusions: Our findings suggest that CXCL10 may serve as a potential prognostic biomarker and immuno-
therapeutic target for ovarian cancer. The results indicate possible clinical applications in patient stratification and
combination immunotherapy strategies, though further mechanistic studies and clinical validation are warranted.
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INTRODUCTION

Ovarian cancer is a common gynecological malignancy with significant heterogeneity and a complex
tumor microenvironment?!. Although surgery and chemotherapy have advanced, most patients still ex-
perience recurrence and treatment resistance, leading to poor prognosis’2. Recent advances in under-
standing the immune microenvironment have revealed the complexity of tertiary lymphoid structures
and immune cell interactions in ovarian cancer, though immune checkpoint inhibitors demonstrate lim-
ited efficacy compared to other cancer types®>.

Programmed cell death protein 1 (PD-1 or PDCD1)/programmed death-ligand 1(PD-L1 or CD274)
inhibitors are important immune checkpoint inhibitors (ICls) that restore T-cell function by blocking
the PD-1/PD-L1 interaction®. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) inhibitors promote
T-cell activation by blocking CTLA-4 binding to its ligands’. A recent study has identified novel immune
regulatory mechanisms involving TIGIT-NECTIN2 interactions and the CD47/TSP-1 axis in ovarian can-
cer®. Furthermore, novel immune checkpoint inhibitors, such as lymphocyte-activation gene 3 (LAG-3)
and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), are under intensive investigation®®,
Nonetheless, the overall response rate to ICls for ovarian cancer remains suboptimal, highlighting the
urgent need to explore combination therapies involving chemotherapy, targeted therapies, and other
immunotherapeutic strategies®8,

C-X-C motif chemokine ligand 10 (CXCL10), classified within the CXC chemokine family, is primar-
ily secreted by immune cells, particularly dendritic cells and macrophages'!. Many factors influence
CXCL10 regulation, including various inflammatory cytokines, important growth factors, and key sig-
naling molecules within the tumor microenvironment®?. CXCL10 exerts its effects through several sig-
naling pathways. Activation of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of
rapamycin (PI3K/AKT/mTOR) pathway influences cellular growth, survival, and metabolism?3, In ovarian
cancer cells, this pathway’s activation is closely associated with tumor progression and the develop-
ment of drug resistance. Furthermore, CXCL10 promotes cellular migration and invasion through the
mitogen-activated protein kinase (MAPK) pathway by regulating cytoskeletal dynamics and extracellular
matrix degradation®. Moreover, CXCL10 modulates immune response pathways and inflammatory pro-
cesses via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling path-
way, thereby impacting cytokine production and immune cell function®®. It also exhibits anti-angiogenic
properties®. During inflammation, CXCL10 promotes immune cell chemotaxis and activation, thereby
modulating the inflammatory microenvironment?®2,

Despite extensive research on the ovarian cancer immune microenvironment, systematic studies
specifically focusing on CXCL10’s role in ovarian cancer remain limited. Both tumor and stromal cells can
produce CXCL10, and preliminary evidence suggests its expression may be elevated in ovarian cancer
tissues and correlate with cancer progression and patient prognosis’’. Developing therapeutic strategies
targeting CXCL10 may enhance the efficacy of ICls and may hold significant clinical potential in treating
ovarian cancer. This study aims to elucidate the role of CXCL10 in ovarian cancer progression and in-
vestigate its potential to synergize with ICls to improve treatment outcomes in ovarian cancer patients.

MATERIALS AND METHODS
Dataset Download and Processing

This study aimed to obtain RNA sequencing from both normal ovarian tissues and ovarian neoplasm
specimens. We initially downloaded RNA-Seq data of normal ovarian tissues from the Genotype-Tis-
sue Expression (GTEx) database (https://gtexportal.org/home/datasets®®). Subsequently, we obtained
RNA-Seq data of ovarian cancer specimens from The Cancer Genome Atlas (TCGA) portal®® (https://por-
tal.gdc.cancer.gov/). Quality control measures included filtering samples with low RNA integrity scores
(<6.0) and removing samples with insufficient clinical annotation. After quality control and data prepro-
cessing, we processed the data using R and Bioconductor packages. The analysis pipeline involved load-
ing required R packages, such as DESeq2 [version 1.42.0] and tximport [version 1.14.0]%. Transcript-level
counts were summarized to Transcripts Per Million (TPM) using tximport, following established proto-
cols?l. After processing, we used the dplyr [version 0.8.1] package to merge the TPM-normalized data
from GTEx and TCGA into a combined expression matrix. To ensure comparability, we then standardized
the integrated data and subjected to downstream bioinformatics analyses at both sample and gene
expression levels.
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Differential expression analysis

Gene expression data and clinical information from the Cancer Genome Atlas Ovarian Cancer (TCGA-OV)
cohort were integrated with normal ovarian tissue data from the GTEx database. All data were stan-
dardized to TPM format for consistency. The limma [version 3.40.2] package in R was utilized to analyze
gene expression differences, producing a set of differentially expressed genes (DEGs) set A. Visualization
of these DEGs was achieved through heatmaps and volcano plots. We established screening criteria by
selecting genes with |logFC| > 0.58 and p-value < 0.05. This allowed us to identify statistically signifi-
cant differentially expressed genes??. Subsequently, we retrieved a chemokine-related gene set from
the Gene Set Enrichment Analysis (GSEA) database. Then, the VennDiagram [version 1.6.20] package in
R was used to identify the intersection between the GTEx-TCGA_OV DEG set and the chemokine gene
set B2, “GTEx-TCGA_OV DEG” refers to a subset of DEGs identified by comparing ovarian tumor tissues
from TCGA-OV with healthy ovarian tissues from the GTEx project.

To validate these findings, differential expression analysis was conducted using three independent GEO
datasets (GSE10971%, GSE14407%°, and GSE18520%) comparing ovarian cancer and normal samples.
Principal Component Analysis (PCA) was performed to assess the overall data structure. Volcano plots
and Venn diagrams were generated to visualize significant DEGs and their overlap across datasets. Heat-
maps depicted the expression patterns of key DEGs, including chemokines such as CXCL10%.

Protein-Protein Interaction Network (PPI) Analysis

This study utilized three main data sets: the Overall Survival (OS) prognostic gene set, the differential
gene set from GTEx-TCGA_QV, and chemokines set. The top 100 differentially expressed prognostic
gene set and the differentially expressed chemokine gene set were identified using the ggplot2 [version
3.4.4]® and VennDiagram [version 1.6.20]*° packages. Subsequently, the protein-protein interaction
network (PPI) was constructed using these combined gene sets via the STRING database®. The resulting
network was imported into Cytoscape software (version 3.10.1), and key hub genes were identified.

Functional Enrichment Analysis

This study analyzed CXCL10 expression levels in ovarian cancer by dividing samples into high and low
groups and screened for relevant differentially expressed genes. Gene expression data were sourced
from the TCGA database and were grouped based on the median CXCL10 expression. The R package
limma [version 3.40.2]* was used for screening using criteria of |log2 fold change| > 1 and p-value <
0.05. Gene annotation was performed using the R package org.Hs.eg.db [3.3.0]. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the
clusterProfiler [version 3.14.0]* package with p < 0.05 as the significance threshold. Gene Set Enrich-
ment Analysis (GSEA) was performed using the fgsea [version 1.10.0]*? package to assess gene enrich-
ment with a significance threshold of p < 0.05. All results were visualized using R software. Plots were
generated with the ggplot2 package [version 3.4.4] and significance was indicated by Log10(p.adjust).

Correlation Analysis of CXCL10 with Immune Checkpoints and Immune Cells

Bioinformatics approaches were used to analyze CXCL10 expression levels in ovarian cancer tissues and
to investigate their correlation with clinical features. Data from TCGA and GEO databases were used to
generate a Venn diagram identifying significantly differentially expressed genes, especially chemokine
genes linked to prognosis. The STRING database constructed the PPl analysis to identify key genes,
whose correlation with T cell-associated immune checkpoints was then analyzed®*®. We used the gg-
plot2 [version 3.4.4] and ComplexHeatmap [2.13.1] packages to generate heatmaps that showed the
expression trends of key immune genes. Additionally, the Cell-type Identification by Estimating Relative
Subsets of RNA Transcripts (CIBERSORT)** algorithm was applied to assess the proportions of various
immune cell types and analyze their relationship with CXCL10 expression regarding immune cell infil-
tration. The results were displayed through bubble plots. All statistical analyses were performed using
R, applying the limma [version 3.40.2] package for differential expression analysis with a significance
threshold set at p < 0.05.
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This study also used bioinformatics methods to analyze the differential expression of CXCL10 and key
immune checkpoint genes, such as PDCD1 and TIGIT. It also analyzed their effects on patient survival.
Box plots were used to display gene expression levels across different groups, enabling straightforward
comparison. TCGA-OV patients were stratified into high and low expression groups for each gene based
on median expression levels. Kaplan-Meier survival analysis and log-rank tests were performed using
the survival [version 3.3.1] package to assess prognostic significance3>3¢. Furthermore, the ggplot2 [ver-
sion 3.4.4] package was used to visualize the correlation between CXCL10 and the 24 immune cell types.
Subsequently, we focused on the examining the infiltration of key T cell subsets (including CD8+ T cells
and Th1 cells) and activated dendritic cells (aDC) in relation to CXCL10. This analysis was visualized using
scatter plots.

Assessment of Clinical Predictive Efficacy of CXCL10, PDCD1, TIGIT, and FOXP3

The prognostic value of CXCL10, PDCD1, TIGIT, and FOXP3 for overall survival was assessed. Initially,
time-dependent receiver operating characteristic (ROC) curve analyses were performed at multiple time
intervals to evaluate prognosis. Expression data of relevant genes were retrieved from the TCGA data-
base, and the area under the curve (AUC) for each gene was calculated using the timeROC [version 0.4]
package® 8. A prognostic nomogram?3”394% incorporating CXCL10 expression, PDCD1 expression, TIGIT
expression, FOXP3 expression, and clinical parameters (stage, age, histological grade, venous invasion
status) was developed using the TCGA-OV cohort. The nomogram was constructed and visualized using
the survival [version 3.3.1] and rms [version 6.3.0] packages. Calibration curves were generated to as-
sess the nomogram’s predictive accuracy. Additionally, diagnostic ROC curve analyses were performed
using the pROC [version 1.18.0] package to validate the predictive power of CXCL10 and other immune
checkpoint genes (PDCD1, TIGIT, FOXP3, interleukin 17A (IL17A), and CD274) in survival prediction®”4142,

Expression and Functional Study of CXCL10 in Ovarian Cancer Cells

Total RNA was isolated from ovarian cancer cell lines (OVCAR3, SKOV3, A2780, and ES2; ProCell) using
the RNA extraction kit (Vazyme, RC112-01) for cell samples. Purified RNA was reverse-transcribed to
cDNA with the cDNA synthesis kit (TransGen, AT341-02). Relative CXCL10 mRNA expression levels were
quantified by real-time quantitative PCR (qPCR) using SYBR Green Master Mix (Vazyme, Q321). Prim-
ers for CXCL10 (F: 5'-CCTGCAAGCCAATTTTGTCC-3’, R: 5’-AGACCTTTCCTTGCTAACTGC-3’) and the refer-
ence gene B-actin (ACTB) (F: 5-GAAAATCTGGCACCACACCTTC-3’, R: 5’-ATGATCTGGGTCATCTTCTCGC-3’)
were used. Data were analyzed using the 22t method. Lentiviral vectors for CXCL10 overexpression
(OE) and knockout (KO; using Cas9-sgRNA system) were constructed. Lentiviruses were produced by
co-transfecting 293T cells (ProCell, CL-0005) with the transfer vector and packaging plasmids (psPAX2
and pMD2.G). SKOV3 (ProCell, CL-0215) and A2780 (ProCell, CL-0013) cells were transduced with lenti-
viruses in the presence of polybrene (8 pg/mL). Fluorescence signal in transduced cells was examined
under a fluorescence microscope to confirm transduction efficiency. Overexpression and knockout ef-
ficiency were confirmed by Western blot. Finally, densitometric analysis was conducted using Image)
software [version 1.52] to calculate relative protein expression, allowing comparison among control,
overexpression, and knockout groups.

Assessment of Sensitivity to Immune Checkpoint Inhibitors and Changes
in Cell Proliferation and Immune Cell Subpopulations

To predict the association between CXCL10 expression and response to immune checkpoint block-
ade, data from The Cancer Immunome Atlas (TCIA)3*%4° (https://tcia.at/) for Skin Cutaneous Melanoma
(SKCM) and Ovarian Cancer (OV) were utilized. Patients were classified into high and low expression
groups based on CXCL10 levels. The Immunophenoscore (IPS) for each patient, representing predicted
response to CTLA-4 and PD-1 blockade, was extracted. IPS scores were compared between high and low
CXCL10 groups within each cancer type using the Mann-Whitney U test. The effect of CXCL10 expression
on tumor cell proliferation and response to anti-PD-1 therapy was assessed in vitro. A2780 and SKOV3
cells with stable CXCL10 overexpression (OE), knockout (KO), or vector control (Ctrl) were co-cultured
with allogeneic PBMCs at a tumor cell:PBMC ratio of 1:5 in RPMI-1640 medium supplemented with 10%
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FBS. Co-cultures were treated with anti-PD-1 monoclonal antibody (10 pg/mL; Pembrolizumab biosim-
ilar). Docetaxel (5 ug/mL) was used as a positive control for cytotoxicity. After 72 hours of co-culture,
cell proliferation was measured using the CCK-8 assay. The experiment was performed in triplicate and
repeated three times independently.

Statistical Analysis

This study used various statistical methods to evaluate the significance and correlations in the experi-
mental data. Specifically, comparative analyses among groups used either one-way ANOVA or t-tests,
depending on whether the data distribution was normal.

RESULTS
Differential Expression Analysis

Figure 1 shows the study workflow. We analyzed gene expression in normal ovarian samples from the
GTEx database and ovarian cancer (OV) samples from the TCGA repository. This analysis identified 2,711
significantly upregulated genes and 4,422 downregulated genes (Figure 2A). The top ten upregulated
genes included SLC34A2, KRT7, S100A1, PLOD1, KRT5, CLDN3, SLPI, CD24, MSLN, and CLDN4, while the
top ten downregulated genes included CCDC53, PUS1, MTAP, AKR1C1, SLC7A10, SERPINA1, CCL18, ZN-
F36L1, GIMAP4, and GIMAPS5. A heatmap (Figure 2B) illustrated the top 25 differentially expressed genes
in normal and ovarian cancer samples. Analysis using a Venn diagram (Figure 2C) revealed 20 upregulat-
ed and 4 downregulated chemokine genes. These findings provided a basis for subsequent chemokine
investigations. Differential expression analysis of chemokines (Figure 2D) revealed significant upregu-
lation of CXCL10 and C-X-C motif ligand 11 (CXCL11) (p < 0.01). A boxplot (Figure 2E) further supported
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Statistical significance is indicated as follows: *** p < 0.001; ** p < 0.01; * p < 0.05.

these conclusions, demonstrating that the expression levels of these chemokines were substantially
increased in ovarian cancer samples compared to normal specimens, suggesting their potential roles in
the tumor microenvironment. Our study identified upregulation of specific genes and chemokines, es-
pecially CXCL10 and CXCL11, suggesting their key roles in ovarian cancer development. Further research
is needed to explore their utility as therapeutic targets or biomarkers.

We performed a systematic analysis of microarray data from GSE10971, GSE14407, and GSE18520.
The GEO chip data indicated the elevated expression of key chemokines, especially CXCL10, in ovarian
cancer samples, providing vital insights for further mechanistic investigations (Supplementary Figure
1). Additionally, we performed extensive validation using the GSE10971 dataset, focusing specifically
on chemokine-related differential genes and gene sets (Supplementary Figure 2). The outcomes of our
study suggested that CXCL10 might play a pivotal role in the initiation and progression of ovarian cancer.
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Protein-Protein Interaction Network Analysis

Venn diagram analysis demonstrated the overlap among three gene sets: those associated with ovarian cancer
prognosis, differentially expressed genes from GTEx and TCGA_OV, and chemokine genes (Figure 3A). From
this analysis, we identified eight differentially expressed chemokines were identified. These chemokines were
prognostically significant and might play important roles in tumor progression. The PPl network analysis re-
vealed strong interactions among the top 100 critical molecules using STRING database (confidence score >
0.4) and Cytoscape visualization (Figure 3B). Notably, several upregulated genes, including CXCL10 and serpin
family B member 3 (SERPINB3) were involved (Figure 3B). The analysis showed a significant increase in CXCL10
expression in the tumor cohort (p < 0.001). Additionally, C-X-C motif chemokine ligand 9 (CXCL9) and CXCL11
also showed significant increases (p < 0.01) (Figure 3C). Moreover, the heatmap confirmed the substantial up-
regulation of CXCL10 and other key genes (Figure 3D). Collectively, these findings emphasized the importance
of further research into the biological roles of these chemokines in ovarian cancer progression, their potential
as diagnostic and therapeutic targets, and their variable expression across different cancer microenvironments.
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Figure 3. Analysis of prognostic molecules related to ovarian cancer, differentially expressed genes in
GTEx-TCGA_OV, and chemokine gene expression. A, Venn diagram shows the overlap among ovarian
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significance is indicated as follows: *** p < 0.001, ** p <0.01, * p < 0.05.
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Functional Enrichment Analysis (GO-KEGG and GSEA)

Figure 4 showed results from three analyses related to differential gene sets associated with CXCL10
expression in ovarian cancer: GO functional enrichment, KEGG pathway, and GSEA. The results indicated
that CXCL10 was significantly enriched in key biological processes such as “lymphocyte-mediated im-
mune response” and “antigen presentation,” underscoring its critical role in immune responses (Figure
4A). Additionally, the analysis confirmed the significant role of CXCL10 in activating T cells and dendritic
cells (Figure 4B). The enrichment scores (normalized enrichment score [NES] values) showed that the
high CXCL10 expression group exhibited significant activation in key signaling pathways, including mito-
chondrial calcium mobilization. These findings highlighted the importance of calcium signaling in regu-
lating immune cell functions (Figure 4C). Finally, the ranking plot from the GSEA analysis revealed that
samples with high CXCL10 expression were significantly enriched in multiple major immune pathways,
further corroborating its central role in promoting immune activity (Figure 4D). These functions sug-
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Figure 4. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set En-
richment Analysis (GSEA) in ovarian cancer samples based on high and low C-X-C motif chemokine ligand
10 (CXCL10) expression. A, The GO and KEGG analyses highlight key biological processes associated with
CXCL10 and identify their enrichment levels. B, The statistical significance of various pathways in the high
CXCL10 expression group is shown based on GO and KEGG analyses. C, Enrichment scores for pathways
across the ordered dataset are presented, including normalized enrichment scores (NES) and rank posi-
tions. D, GSEA results illustrate differences in pathway enrichment scores across samples with high CXCL10
expression. Statistical significance is indicated as follows: *** p < 0.001; ** p <0.01; * p <0.05.
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gested that CXCL10 had potential as both a biomarker and a therapeutic target in anti-tumor immuno-
therapy. Therefore, future studies should focus on elucidating the precise mechanisms by which CXCL10
interacted with other immune components, particularly its role in promoting immune cell infiltration
within the tumor microenvironment. Understanding these complex dynamics could provide significant
insights for developing novel immunotherapeutic strategies designed to enhance patient outcomes.

Correlation Analysis of CXCL10 with Immune Checkpoints and Immune Cells

This study identified 127 differentially expressed genes related to prognosis, including 7 chemokine genes.
These genes were identified by integrating gene expression data from the GTEx-TCGA_OV dataset. We then
analyzed differentially expressed genes related to overall survival (OS) in conjunction with the chemokine gene
set (Figure 5A). A comprehensive analysis of the PPl network revealed that CXCL10 interacted with its related
genes (Figure 5B), highlighting CXCL10’s strong connection with numerous immune cell-related genes. The
correlation heatmap analysis showed strong correlations between CXCL10 and immune checkpoint genes,
including PDCD1 and CTLA-4 (p < 0.05) (Figure 5C). Furthermore, it highlighted a significant correlation be-
tween CXCL10 expression and the density of T cells and macrophages present (Figures 5D and 5E). The bub-
ble plot showed the infiltration levels of various immune cell types in relation to CXCL10 expression. Bubble
size and color indicated the strength and direction of these associations, highlighting particularly strong links
with T cell subsets, such as regulatory T cells (Tregs), T helper 1 (Th1) cells, and cytotoxic T cells (Figure 5F).
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Figure 5. Examination of C-X-C motif chemokine ligand 10 (CXCL10) within neoplastic tissues and its
association with immune cell infiltration. A, A Venn diagram showed the overlap of significantly diffe-
rentially expressed genes from three datasets: ovarian cancer overall survival (OS)-related differentially
expressed genes (DEGs) (OV OS DEG), GTEx-TCGA_OV DEGs, and chemokines. B, A protein-protein inte-
raction (PPI) network illustrates the interactions between CXCL10 and its related genes. C, A heatmap
shows the correlations between CXCL10 and immune checkpoint genes, including correlation coeffi-
cients and significance levels. D-E, Heatmaps display the expression profiles of CXCL10 together with im-
mune checkpoint genes expressed in T cells and macrophages, highlighting their differential expression
patterns. F, A bubble plot illustrates the correlation between CXCL10 and immune cell infiltration levels,
with bubble color and size indicating infiltration degree. Statistical significance is indicated as follows:
*** p<0.001; ** p<0.01; * p<0.05.
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These results suggested that high CXCL10 levels might enhance the immune response by recruiting T cells. In
summary, these findings demonstrated that CXCL10 was highly expressed in ovarian tumor tissues and closely
linked to diverse immune checkpoints and immune cell infiltration, suggesting its pivotal role in the immune
microenvironment and potential as a clinical therapeutic target.

Bioinformatics Analysis of CXCL10 and Immune Checkpoint Gene Expression Differences

This investigation examined the relationship between CXCL10 and key immune checkpoint genes: PDCD1,
TIGIT, FOXP3, and CD274. Additionally, it explored their implications for ovarian cancer prognosis using
bioinformatics analysis. Scatterplot analyses revealed strong positive correlations between CXCL10 and
PDCD1, TIGIT, and FOXP3, but no significant correlation between CXCL10 and cytokine IL17A. Further-
more, survival curve analysis (Supplementary Figure 3) showed that patients with elevated expression
levels of CXCL10, PDCD1, TIGIT, and FOXP3 had significantly prolonged survival compared to those with
lower expression, with hazard ratios (HRs) all below 1. This underscored their potential applicability as
favorable prognostic markers. Overall, these findings highlighted the notable contribution of CXCL10
and T cell-related immune checkpoints in the tumor immune microenvironment, suggesting CXCL10 as
a promising prognostic biomarker.

Correlation Analysis of CXCL10 and Immune Cell Infiltration

This research investigated the association between CXCL10 and the infiltration of 24 immune cell types.
We used Spearman correlation to assess the relationship between CXCL10 and various immune cell pop-
ulations (Supplementary Figure 4A). Scatter plots (Supplementary Figures 4B-S4J) revealed significant
positive correlations between CXCL10 and several T cell subtypes, including cytotoxic T cells, Th1l cells,
Treg cells, and T helper 2 (Th2) cells. Future studies should clarify the function and pathways of CXCL10
in ovarian carcinoma and other tumors in order to better evaluate its potential as a therapeutic target.
Despite challenges like data complexity and variability in immune cell infiltration, future studies should
combine clinical specimens with animal models for more comprehensive analysis.

Assessment of Clinical Predictive Efficacy of CXCL10, PDCD1, TIGIT, and FOXP3

In this study, we used advanced bioinformatics methods to evaluate four biomarkers: CXCL10, PDCD1,
TIGIT, and FOXP3. We further assessed their ability to predict survival outcomes in ovarian cancer pa-
tients. The analysis revealed time-dependent ROC AUC values of 0.446 for CXCL10, 0.478 for PDCD1,
0.435 for TIGIT, and 0.455 for FOXP3, indicating limited prognostic capability of these biomarkers when
considered independently (Figure 6A). Nonetheless, the nomogram-derived calibration curves exhibit-
ed good concordance between the predicted survival probabilities and the empirically observed surviv-
al rates at 1, 3, and 5 years (p < 0.01) (Figure 6B). The results showed that biomarker scores significantly
correlated with clinical features, including pathological grading and staging, effectively predicting pa-
tient survival. By integrating clinical characteristics with biomarker scores, the nomogram offered an
innovative and comprehensive strategy for individualized survival prediction (Figure 6C). ROC curve
analysis for diagnostic showed AUC values of 0.976 for CXCL10, 0.777 for PDCD1, 0.837 for TIGIT, 0.946
for FOXP3, 0.528 for IL17A, and 0.626 for CD274, highlighting their potential clinical value (Figure 6D).
These findings implied that CXCL10, PDCD1, TIGIT, and FOXP3 may function as relevant biomarkers for
predicting patient survival. This model also demonstrated good calibration performance. Future studies
should focus on improving the reliability and clinical utility of these biomarkers, particularly by exploring
their combined effects to improve prognostic tools for ovarian cancer patients.

Expression and Functional Study of CXCL10 in Ovarian Cancer Cells

This study compared CXCL10 expression in ovarian cancer cell lines: OVCAR3, SKOV3, A2780, and ES2.
Among these, CXCL10 levels were significantly higher in the A2780 cells (p < 0.01) (Figure 7A). Fluores-
cence microscopy images confirmed successful transfection and normal morphology after CXCL10 over-
expression or knockout in SKOV3 and A2780 cells (Figure 7B). Western blot analysis supported these
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Figure 6. Prognostic performance of C-X-C motif chemokine ligand 10 (CXCL10), programmed cell death 1
(PDCD1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and forkhead box P3 (FOXP3). A, Time-
dependent receiver operating characteristic (ROC) curve show area under the curve (AUC) values of 0.446,
0.478, 0.435, and 0.455 for these biomarkers in five-year survival prediction. B, The nomogram calibration
curves compare predicted probabilities with actual survival outcomes, demonstrating satisfactory calibration
for 1-, 3-, and 5-year survival. C, The nomogram integrates clinical features and biomarker scores, calculating
the weighted impact of each to predict patient survival probabilities. D, The ROC curves for CXCL10, PDCD1,
TIGIT, FOXP3, interleukin-17A (IL17A), and programmed death-ligand 1 (CD274 or PD-L1) show AUC values of
0.976,0.777,0.837,0.946, 0.528, and 0.626, respectively, suggesting their potential utility in clinical practice.

findings, using B-actin as the loading control (Figure 7C). Grayscale analysis demonstrated that CXCL10
protein levels were significantly increased in the SKOV3-CXCL10 overexpression group compared to the
control group (Figure 7D). These results confirmed the regulatory role of CXCL10 in ovarian cancer,
with A2780 showing the highest expression and SKOV3 lower expression. Lentivirus-mediated CXCL10
overexpression and knockout experiments established valuable cell models for further functional stud-
ies. SKCM samples with high CXCL10 levels had significantly higher therapeutic scores than those with
low levels (p < 0.001) (Figure 7E). A similar trend was observed in TCGA_QV ovarian cancer specimens,
where high CXCL10 expression correlated with superior therapeutic scores (p < 0.001) (Figure 7F).
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Figure 7. Analysis of treatment scores and cell proliferation effects of C-X-C motif chemokine ligand 10 (CXCL10)
in ovarian cancer. A, CXCL10 expression varies among cell lines. A2780 shows significantly higher levels than
other cell lines (p < 0.01). B, Fluorescence microscopy reveals successful transfection in SKOV3 and A2780 cells
following CXCL10 overexpression or knockout. C, Western blot confirms CXCL10 protein levels using beta-actin
(B-actin) as the loading control. D, Grayscale analysis shows that SKOV3-CXCL10 overexpression (SKOV3-CXCL10
OE) cells have significantly elevated CXCL10 levels, while A2780-CXCL10 knockout (A2780-CXCL10 KO) cells
show decreased levels compared to controls (p < 0.01). E, Skin cutaneous melanoma (SKCM) samples with high
CXCL10 expression demonstrates higher treatment scores compared with low CXCL10 groups. F, Comparison of
treatment scores in The Cancer Genome Atlas—ovarian cancer (TCGA-OV) samples reveal the impact of varying
CXCL10 expression levels. G, In A2780 cells, anti-programmed cell death protein 1 (PD-1) antibody treatment si-
gnificantly alters proliferation between CXCL10 overexpressing and knockout cell lines, with additional variation
observed under peripheral blood mononuclear cells (PBMCs) co-culture conditions. H, The inhibition rate of
proliferation was significantly higher in the CXCL10 overexpressing group compared with other A2780-derived
cells. I, Anti-PD-1 antibody treatment results in distinct proliferation outcomes in SKOV3 CXCL10 overexpres-
sing cell lines and PBMCs co-cultured cells. J, The CXCL10 overexpressing group in SKOV3-derived cells exhibits
a significantly greater proliferation inhibition compared with SKOV3 control and knockout groups. Statistical
significance is indicated as follows: *** p <0.001; ** p <0.01; * p < 0.05.
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Elevated CXCL10 expression improved clinical outcomes in PDCD1-positive patients, suggesting better
treatment response. Proliferation assays on A2780 cells treated with anti-PD-1 antibody revealed de-
creased proliferation rates in CXCL10-overexpressing cells (Figure 7G). The CXCL10 overexpression co-
hort exhibited a significantly higher inhibition rate compared to other groups (p < 0.001) (Figure 7H).
Similar trends were observed in the SKOV3 cell line (Figure 71), with CXCL10 overexpression leading to
reduced proliferation. There was a statistically significant difference in inhibition rates between the
CXCL10 overexpression cohort and the control cohort (p < 0.01) (Figure 7J). Overall, these findings high-
lighted a strong link between elevated CXCL10 expression and improved therapeutic efficacy and re-
duced cellular proliferation. These results offered novel perspectives for optimizing immunotherapeutic
strategies.

DISCUSSION

Ovarian cancer (OV) ranks among the most lethal malignancies of the female reproductive system, and
its global incidence is rising annually**#4. The global incidence rate is 6.8 per 100,000, with most cases
diagnosed at advanced stages. Therefore, early identification and intervention are crucial for improving
patient survival outcomes. Early diagnosis is challenging due to ambiguous symptoms and the lack of ef-
fective early detection methods, posing significant difficulties in clinical management. Therefore, it is es-
sential to investigate novel biomarkers that facilitate early diagnosis and refine therapeutic approaches.

This investigation systematically elucidated the pivotal function of the chemokine CXCL10 within
the tumor microenvironment by conducting differential gene expression analyses of ovarian cancer
specimens obtained from GTEx and TCGA. Volcano plots and heatmaps showed significant upregula-
tion of CXCL10 and other chemokines in tumor tissues, with the elevation of CXCL10 being significantly
correlated with the infiltration of T cells and macrophages (p < 0.001). Pathway enrichment analysis
revealed activation of the interferon-gamma signaling pathway (FDR < 0.01), the antigen presentation
pathway (FDR < 0.05), and the T cell activation pathway, highlighting CXCL10’s central role in orchestrat-
ing antitumor immune responses. These results offer novel perspectives on the mechanisms underlying
immune evasion in ovarian cancer and establish a foundational basis for prospective immunotherapeu-
tic interventions.

Immunotherapy has emerged as a transformative therapeutic modality in oncology, but its ap-
plication in ovarian cancer faces substantial challenges. Immune checkpoint inhibitors, particularly
PD-1/PD-L1 inhibitors, show objective response rates below 15% as monotherapy in ovarian cancer.
This is lower than their 20-40% response rates observed in other solid tumors**¢. The limited efficacy
of immune checkpoint inhibitors mainly results from ovarian cancer’s unique immunosuppressive mi-
croenvironment. It is characterized by infiltration of regulatory T cells and tumor-associated macro-
phages, as well as a relatively low tumor mutational burden that restricts neoantigen generation*’4,
Additionally, ascites creates an immunosuppressive microenvironment that inhibits immune effec-
tor cell function by releasing immunosuppressive cytokines and imposing metabolic constraints®.
Our findings demonstrate that CXCL10 and immune checkpoints, including PDCD1 (PD-1), TIGIT, and
FOXP3, represent promising targets for synergistic therapeutic strategies. Furthermore, survival anal-
ysis reveals that patients with higher expression of CXCL10 and these immune checkpoints survive
significantly longer than those with lower levels (HR < 1), supporting their role as favorable prognostic
markers. Furthermore, evidence suggests that BRCA1/2 deficiency enhances CXCL10 levels and CD8
T cell infiltration in ovarian cancer, with activation of STING pathway leading to pronounced CXCL10
expression in BRCA1-deficient tumors®%5L,

Our investigation identifies CXCL10 as a crucial modulator of the ovarian cancer immune microenvi-
ronment. It also highlights important implications for precision oncology by demonstrating correlations
with CD8 T cell infiltration and immune checkpoint activation. However, this study has limitations, includ-
ing its retrospective design and absence of BRCA1/2 mutation analysis. Future research should focus on
the cGAS-STING-CXCL10 axis in BRCA-deficient tumors to define its contribution to antitumor immune
activation. CXCL10 together with BRCA1/2 should be prospectively validated as composite biomarkers,
assessing their joint performance for predicting immunotherapy benefit and guiding patient stratification.
Therapeutic development should evaluate CXCL10-centered strategies, including rational combinations
with PD-1 blockade to potentiate T-cell-mediated control and the design of CXCL10-directed bispecific
antibodies to enhance immune recruitment. Standardization of clinical detection protocols, coupled with
rigorous validation in well-designed prospective trials and mechanistic studies, will be essential to enable
clinical implementation and advance personalized immunotherapy for ovarian cancer.
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