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ABSTRACT - Objective: N6-methyladenosine (m6A) methylation regulators are critical for cancer progression,
but published data on the mechanism of m6A modification in tumor microenvironment (TME) cell infiltration of col-
orectal cancer (CRC) remains limited. This study aimed to investigate the correlation between m6A modification pat-
terns and CRC TME heterogeneity and explore their prognostic significance and guiding value for immunotherapy.

Materials and Methods: RNA expression profiles and clinical data of CRC were retrieved from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO). Unsupervised clustering was performed to evaluate m6A modifica-
tion patterns of 23 m6A methylation regulators in 983 CRC samples, and their associations with TME cell infiltration char-
acteristics were systematically analyzed. Gene Ontology (GO) and gene set variation analysis (GSVA) explored underlying
mechanisms, while principal component analysis (PCA) constructed an m6A score to quantify modification patterns.

Results: m6A methylation regulators showed high genetic and expression heterogeneity in CRC, leading to
three distinct modification patterns. These patterns closely matched three immunophenotypes (immune rejec-
tion, immune inflammation, and immune desert) and exhibited distinct biological functions. Univariate and multi-
variate Cox regression indicated m6A score as an independent prognostic factor (HR=1.010, 95% CI: 1.002-1.019;
HR=1.009, 95% Cl: 1.000-1.017). Low m6A scores correlated with higher tumor mutation load, PD-L1/CTLA-4
expression, and poor survival. In the CTLA-4 immunotherapy cohort, high m6A scores were associated with sig-
nificantly better immune response and clinical benefit (p=3.4e-06).

Conclusions: m6A methylation modification patterns are key drivers of TME heterogeneity and complexity in
CRC. Exploring the relationship between m6A modification patterns and TME aids in formulating CRC immuno-
therapy strategies and provides valuable prognostic guidance.

KEYWORDS: m6A, Colorectal cancer, Mutation burden, Tumor microenvironment, Immunotherapy.

INTRODUCTION

Colorectal cancer (CRC) is a global health concern, ranking as the third most common cancer worldwide
and the fourth leading cause of cancer-related death®. Although the incidence and mortality rates have
declined in recent years, there has been an increase in the occurrence of this disease among younger
and middle-aged populations?. CRC is often found at advanced stages due to its association with here-
ditary cancer and inflammatory bowel disease, posing challenges for effective treatment®. Therefore,
developing precise and effective strategies for the early diagnosis and treatment of CRC is critical to
reduce the incidence and improve survival rates.
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N6-methyladenosine (m6A) is the most prevalent internal modification of messenger RNA (mRNA)
and long non-coding RNA (IncRNA) in eukaryotes, first discovered in 1970*. M6A methylation regula-
tors are known to play a significant role in cancer development, particularly in cell proliferation, migra-
tion, and invasion®. The m6A methylation process, dynamically regulated by RNA methylation regulators
(“writers”, “erasers” and “readers”), is linked to the occurrence and progression of cancer®. For example,
the effects of m6A modification and the deregulation of m6A methylation regulators have been descri-
bed in melanoma (MEL)’. In liver cancer, an imbalance of YTH domain family (YTHDF) reader proteins
has also been shown to promote the development of viral hepatitis®.

Although numerous studies have established a close relationship between m6A regulators and can-
cer, most of these investigations have focused on the role of individual regulators, resulting in con-
text-dependent and sometimes even contradictory findings. For example, increased expression of
methyltransferase-like 3 (METTL3) has been noted in patients with acute myelogenous leukemia (AML),
promoting carcinogenesis®; In glioblastoma (GBM), a decrease in METTL3 or METTL14 expression pro-
motes the growth of glioblastoma stem-like cells (GSC), thereby increasing tumor development®. In non-
small cell lung cancer (NSCLC), METTL3 plays a driving role in cancer cell growth, survival, and invasion®°.
In CRC, scholars have shown that METTL3 promotes the development of CRC in vitro and in vivo''. Howe-
ver, the overall role of the entire m6A regulatory network remains poorly understood. The single-gene
research approach provides incomplete information and limits the development of m6A-based clinical
biomarkers.

The pathogenesis of tumors is complex, involving the cooperation of genetic factors and the tumor
microenvironment (TME), in which the m6A modification also plays a critical role. Lymphocytes in the
TME and their associated factors can regulate tumor occurrence, development, and invasion!?. Myeloid-
Derived Suppressor Cells (MDSCs) comprise up to 40% of the immune infiltrate in gliomas and secrete
immunosuppressive factors that reduce the efficacy of immunotherapy by inhibiting T-cells®*. Additio-
nally, decreased expression of colony-stimulating factor 1 receptor (CSF1R), which is regulated by DNA
methylation, promotes growth, invasion, and migration of hepatocellular carcinoma (HCC) by tumor-
associated macrophages (TAMs)*. Previous studies'>!* have mainly examined the relationship between
a specific m6A methylation regulator and a particular immune cell type, but have not systematically
characterized how global m6A modification patterns shape the immune landscape of the TME. To gain
deeper insights into the interaction between m6A mechanisms and the anti-tumor immune response, a
more comprehensive research approach is required. This study aims to elucidate the role of m6A methy-
lation in combination with the CRC TME, thereby exploring potential targets for tumor therapy.

To achieve this aim, we downloaded the CRC dataset and clinical data from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (TCGA) (http://can-
cergenome.nih.gov/) databases. We analyzed a series of m6A methylation regulators and their related
genes, annotated their functions and pathways, and developed and validated a novel quantitative m6A
scoring signature. As the key clinical implication of this study, this scoring system integrates the complex
biological information of m6A-related genes into a single, clinically applicable, patient-specific indicator.
Using this score, we systematically evaluated the tumor microenvironment (TME), predicted patient
prognosis, and explored its potential as a biomarker to guide immunotherapy, thereby providing new
insights into the personalized treatment of CRC patients.

MATERIALS AND METHODS
Data Downloading and Preprocessing

This study investigated CRC using data from TCGA (http://cancergenome.nih.gov/) and GEO (https://
www.ncbi.nlm.nih.gov/geo/). A total of 398 CRC samples and 39 normal samples were screened for gene
expression data, mutations, and clinical data. The GEO dataset GSE39582, containing gene expression
data for 585 CRC samples and their clinical data, was obtained and analyzed. Table 1 provides detailed
information on the GSE39582 dataset, including survival time, survival status, age, gender, stage, grade,
and TNM stage. The copy number of CRC was obtained from the University of California, Santa Cruz
Xena data hub (UCSC Xena). Perl software and R software’s “limma'”” package were used to merge and
annotate the TCGA gene expression data and GSE39582, and FPKM format from TCGA was converted
to transcripts per kilobase million (TPM) format. Copy number variation (CNV) analysis was performed
and visualized using the R software’s “RCircos” package, and somatic mutation was detected using the
“maftools” package. Table 1 provides additional details on the GEO dataset GSE39582 used in this study.
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Table 1. Information of the GEO dataset.

Dataset Reference Plantform Tumor Normal

GSE39582 [HG-U133_Plus_2] Affymetrix Human Genome 585 0
U133 Plus 2.0 Array

Consensus Molecular Clustering of m6A Methylation Regulators

In this study, we investigated the role of m6A methylation regulatory factors in CRC. A comprehensive
list of 23 m6A methylation regulators, including 8 writers (METTL3, METTL14, METTL16, WTAP, VIRMA,
ZC3H13, RBM15, RBM15B), 13 readers (YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1,
LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX), and 2 erasers (FTO, ALKBH5), was compiled from
published literature. We detected different m6A methylation modifications in CRC based on the expres-
sion of the 23 m6A methylation regulators.

To identify the relationship between m6A methylation regulators’ expression and survival, we
used univariate Cox model*® analysis with p-value less than 0.05 as a threshold for significance. To
further classify CRC samples based on m6A methylation modifications, we performed unsupervised
cluster analysis using the "ConsensusClusterPlus®" package in R software. The k-values were calcu-
lated and increased from 2 to 9. We selected the stable k-value based on the cumulative function
distribution curve and the number of samples in each subtype, which allowed us to identify diffe-
rent m6A methylation modifications in CRC. Overall, our findings provide important insights into
the role of m6A methylation regulatory factors in CRC and may have implications for developing
targeted therapies.

Gene Set Variation Analysis (GSVA) and Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG) Pathway Enrichment Analysis

In order to investigate the differences in functions and pathways among different gene clusters, we
utilized the Gene Set Enrichment Analysis (GSEA) (www.gsea-msigdb.org/gsea/index.jsp) database and
downloaded the gene set pathway file. To conduct our analysis, we utilized R software packages such
as “limma?””, “GSEABase?!”, and “GSVA?¥”. An important part of our analysis involved using the “GSVA”
package to perform kernel estimation of the cumulative density function (TCDF) on our gene expression
matrix. This allowed us to sort the genes by expression levels, calculate Kolmogorov-Smirnov-like rank
statistics for each gene set, and output a matrix containing the enrichment fractions of gene sets and
sample pathways?2.

Furthermore, we used the “org.Hs.eg.db”, “DOSE*”, “clusterProfiler?®”, and “enrichplot®*” packages
of R to perform enrichment analysis of GO pathways (p-value = 0.05, adj. p = 0.05) and KEGG pathways
(p-value = 0.05, adj. p = 1) functions. Overall, our analysis allowed us to gain important insights into the
functional and pathway differences among different gene clusters and provided valuable information for
understanding the underlying mechanisms of CRC.

Differential Analysis of Immune Cells by Single-Sample Gene
Set Enrichment Analysis (ssGSEA)

We utilized the immune cell gene set curated by Pornpimol Charoentong? to analyze the TME infiltra-
tion of m6A subtype. To perform this analysis, we employed R software packages including “GSVA?”,
“GSEABase?'”, and “limma'"”.

To calculate the enrichment score of each sample, we utilized the ssGSEA method. This method
calculates the grade of gene expression survival difference score inside and outside the gene set and
then normalizes the enrichment score through the values obtained in all gene sets and samples?. This
allowed us to investigate immune cell infiltration in the TME of the m6A subtype and to gain a better
understanding of the underlying mechanisms of CRC.


http://www.gsea-msigdb.org/gsea/index.jsp
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Screening and Consensus Clustering of Differentially Expressed Genes (DEGs)
Among m6A Subtypes

The “limma?”” package in R software was used to analyze the differences of m6A methylation regulators
clusters and screen the common differential genes among different genotypes. To determine significan-
ce, we considered an adjusted p-value of less than 0.001.

Next, we screened the genes associated with prognosis using the univariate Cox model®, with a
screening standard of p-value less than 0.05. To perform cluster analysis of samples, we utilized both
the “limma?”” and “ConsensusClusterPlus®*” packages. Further, we analyzed the differences in survival
status and m6A methylation regulators expression among gene clusters.

Construction of m6A-Scoring Signature and its Correlation with Mutation,
Clinical, Immunotherapy, and Microsatellite Instability (MSI)

DEGs significantly related to m6A cluster prognosis were screened by univariate Cox method. We then
used the principal component analysis (PCA) method to obtain the m6A score for each sample based on
the expression of m6A cluster prognosis genes. This score was calculated using the formula:

m6A score=3PC1i+>PC2j

where PC1 and PC2 are the principal components obtained from the PCA analysis®®. The optimal
threshold was obtained through survival analysis. M6A cluster prognostic genes were divided into
two groups. If the score was higher than the threshold, it was a high rating group, and if it was lower
than the threshold, it was a low rating group. Further, we analyzed the difference in survival between
these groups and conducted immune correlation analysis based on the TME-infiltrating immune cell
gene set?®.

Tumor mutational burden (TMB) is a recognized biomarker of immune checkpoint inhibition respon-
se in tumors®, which detects the mutation of every million DNA coding somatic cells*’. We used R sof-
tware to analyze the survival of tumor mutation load between high and low score groups. In addition,
we also analyzed the gene mutation. According to the gene mutation, PD-L1 was selected as the target
gene for differential analysis.

The differences in clinical and MSI scores between high- and low-score groups were analyzed using R
software. MSI criteria were defined by comparing normal genes with those in cancer genes. When there
are three base pairs mismatch, it is determined as microsatellite unstable MSI. Two or more microsatel-
lite instability sites (MSIS) are determined as MSI-High (MSI-H), one MSl is determined as MSI-Low (MSI-
L), and no MSI is determined as MSI stable (MSS)31. The immunotherapy scoring file was downloaded
from the cancer imaging archive (TCIA) (http://tcia.at/) database, the clinical data of different CTLA-4
and PD-1 treatment effects were integrated and analyzed??.

Statistical Analysis

The PCA method was used for the construction of the m6A score and PCA. A group of variables that
may have correlation is transformed into a group of linearly uncorrelated variables through orthogo-
nal transformation. The transformed group of variables is called principal component, which aims to
reduce dimension®3. The k-value selection of consensus clustering is based on the cumulative distri-
bution function, and the proportion of k-value can accurately represent the overall prediction. Univa-
riate Cox analysis was used to determine the prognostic value and the screening of m6A methylation
regulator-related genes. Survival analysis used the Kaplan-Meier method to screen out patients who
reached the event and terminated follow-up, and the cumulative survival probability was obtained
according to the inverse survival probability®*. A t-test was used to compare the two groups of data,
and an analysis of variance was used to compare the three groups of data. R version 3.5.1 was used
for all statistical analyses.

RESULTS

According to the screening criteria of logFC>1 and p<0.05, the relationship between m6A-related gene mu-
tations and CRC was determined in the TCGA-COAD gene expression matrix and the GEO dataset GSE39582.


http://tcia.at/
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Genetic Variation of m6A Methylation Regulators in CRC

The mutation rate of m6A RNA methylation regulators in 399 samples was 27.82%. The results showed
that ZC3H13 had the highest mutation frequency in all samples, reaching 9%. The base mutation type
was mainly a cytosine mutation to thymine, and the gene mutation was mainly a missense mutation
(Figure 1A). As the ZC3H13 mutation frequency was the highest, the correlation between mutation and
m6A methylation regulators’ expression was analyzed (Supplementary Figure 1). The ZC3H13 mutation
was significantly upregulated in ALKBH5, METTL3, and RBM15; The ZC3H13 mutant was significantly
downregulated in YTHDF1 and ZC3H1 (p < 0.05). The deletion and gain of m6A methylation regulator
gene copy number were mainly concentrated on chromosomes 1-5, and the gain and deletion of m6A
methylation regulator gene copy number were mainly concentrated on chromosomes 6-8 (Figure 1B).

Altered in 111 (27.82%) of 399 samples.
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Figure 1. M6A genetic factor variation landscape in CRC (A) M6A RNA methylation regulator waterfall. The
top is the total mutation frequency, and the left is the mutation frequency of a single gene. The middle
figure shows gene mutation. Gray represents that the gene has no mutation in the sample, green rep-
resents missense mutation, red represents nonsense mutation, orange represents shear point mutation,
blue represents frameshift deletion mutation, purple represents frameshift insertion mutation, and black
represents multiple mutations. The lower figure shows the type of base mutation. Red represents cytosine
mutation to thymine, dark blue represents cytosine mutation to guanine, blue represents cytosine muta-
tion to adenine, green represents thymine mutation to adenine, yellow represents thymine mutation to
cytosine, and orange represents thymine mutation to guanine. B, Copy number variation in chromosomes.
The inner circle is m6A methylation regulators. The blue dot indicates that the number of deleted copies is
greater than the number of increased copies, and the red dot indicates that the number of increased cop-
ies is greater than the number of deleted copies. The middle circle is the connector and the outer circle is
the human chromosome. C, m6A methylation regulators copy number variation frequency. Red represents
the increased gene copy number and green represents the missing gene copy number. D, Box diagram of
differential analysis of 23 m6A methylation regulators in CRC. Blue is the normal sample, red is the CRC
sample (***represents p < 0.001, **represents p < 0.05, *represents p < 0.1).
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According to the m6A copy number variation frequency analysis results (Figure 1C), YTHDF1 has a si-
gnificant copy number increase, and ZC3H13, RBM15, YTHDF2, METTL14, YTHDC2, RBM15B, and other
genes have a significant copy number deletion. Based on the difference analysis of the TCGA databa-
se, METTL3, METTL16, WTAP, VIRMA, ZC3H13, RBM15, RBM15B, YTHDC1, YTHDF1, YTHDF2, HNRNPC,
FMR1, LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX, FTO, ALKBH5 were screened (p < 0.05), of
which 18 genes had very significant differences (p < 0.001) (Figure 1D).

Immune Infiltration and Biological Function under m6A Methylation Modification

Univariate Cox regression analysis was used to screen m6A methylation regulators related to the pro-
gnosis of CRC (Table 2). The prognosis network diagram showed that most of the 21 m6A RNA methy-
lation regulatory factors related to the prognosis were negatively correlated in the prognosis, and only
LRPPRC, YTHPF3, YTHPF1, YTHPC2, and TGFBP2 were positively correlated in the prognosis (Figure 2A).
Based on the consensus molecular clustering of 398 CRC samples in the TCGA database and 585 CRC
samples in GSE39582 gene expression profile in the GEO database, according to the best stability of k =
3, CRC samples were divided into three subtypes (Supplementary Figure 2A-C), namely m6Acluster A,
m6Acluster B and m6Acluster C. From the survival data obtained from the TCGA database and the GEO
database, the shortest follow-up survival time was 0 days, and the longest was 6,030 days. Although
the survival analysis showed no significant difference in survival between m6A cluster subtypes (Figure
2C), we observed differences in immune cell infiltration across m6A modification patterns. CD8(+) T
cells, pre-B cells, CD4(+) T cells have high abundance in m6Acluster C. Monocytes, T helper (Th) 1 cell
and neutrophilic granulocyte have high abundance in m6Acluster A. Eosinophilic granulocytes, gamma
delta T cell, natural killer (NK) cell, natural killer T (NKT) cell and regulatory T cell have high abundances
in mb6Acluster B (Figure 2D). GSVA enrichment analysis showed differences in basic transcription factors;
m6A cluster B was enriched in the ubiquitin-mediated proteolysis pathway (Supplementary Figure 3).

Table 2. Univariate analysis of the fourteen genes in the CRC patients of the TCGA cohort.

Gene symbol Hazard ratio (95% Cl) p-value
IGFBP3 1.20528 (1.05987-1.37064) 0.00442
ZC3H13 1.28937 (1.04386-1.59262) 0.01836
FTO 1.39643 (1.04937-1.85828) 0.02199
LRPPRC 0.80533 (0.64612-1.00378) 0.05405
ALKBH5 1.27733 (0.93980-1.73607) 0.11795
WTAP 1.30276 (0.89914-1.88754) 0.16211
HNRNPC 1.23629 (0.91678-1.66715) 0.16440
YTHDC2 0.87938 (0.70662-1.09439) 0.24942
METTL3 1.15165 (0.87080-0.87080) 0.32220
VIRMA 1.11546 (0.86231-1.44292) 0.40542
IGFBP2 0.97188 (0.90769-1.04061) 0.41324
YTHDF1 0.91822 (0.73600-1.14556) 0.44969
YTHDF3 1.06480 (0.87995-1.28847) 0.51870
FMR1 1.02778 (0.86626-1.21942) 0.75340

Based on the three m6A modification patterns of CRC, 645 DEGs were identified (Supplementary
Figure 4A). Through the analysis of biological function and pathway enrichment, m6A cluster DEGs were
mainly involved in the biological processes, such as RNA splicing in BP, nuclear speck and spindle in CC,
and transcription coregulator activity in MF (Figure 3A). Their functions were mainly enriched in Herpes
simplex virus 1 infection and the Ubiquitin-mediated proteolysis pathway (Figure 3B). The DEGs among
the three m6A clusters were identified by the univariate Cox method, and the prognosis-related genes of
118 m6A methylation regulators were obtained. A total of 967 samples from the GSE39582 gene expres-
sion profile in the TCGA and GEO databases were further clustered. According to the cumulative distri-


https://www.wcrj.net/wp-content/uploads/sites/5/2025/11/Supplementary-Figure-2.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2025/11/Supplementary-Figure-3.pdf
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Figure 2. Interaction of m6A subtype immune infiltration (A) M6A RNA methylation regulators in prog-
nosis. The red line represents a positive correlation, and the blue line represents a negative correlation.
The right side of the node is gene risk, green represents low-risk gene and purple represents high-risk
gene; On the left is the gene types, red for erasers, orange for readers and gray for writers. The larger the
node, the more prognostic it is. B, m6Acluster represents type of classification, PCA1 represents princi-
pal component analysis 1, and PCA2 represents principal component analysis 2. C, Survival curve of m6A
subtype (p = 0.333). D, The abscissa of the box diagram of immune cell difference analysis is immune
cells, the ordinate is the content of immune cells in typing, and m6Acluster represents type of classi-
fication, *Represents difference (p < 0.1), **represents significant difference (p < 0.05), ***represents
extremely significant difference (p < 0.01).

bution function, k = 3 was selected, and the CRC samples were further divided into three gene subtypes
(Supplementary Figure 4B-D). Different gene subtypes showed different clinicopathological features, in
which gene-cluster C was associated with m6A, cluster A and stage NO, gene-cluster B was associated
with age < 65 and stage N1-3, and prognosis-related genes were highly expressed in gene-cluster B
and lowly expressed in gene-cluster C (Supplementary Figure 4E). By analyzing the survival of the three
gene subtypes, we found that as time increased, the survival rate of patients decreased, and there were
significant differences in survival among the three gene subtypes. The prognosis of gene-cluster B was
the worst, that of gene-cluster C was the best, and the five-year survival rate of each subtype was higher
than 50% (Figure 3C). The difference analysis of 21 m6A methylation regulators in gene subtypes show-
ed that the expression of 19 m6A methylation regulators was different in different gene subtypes. We
observed that, except for IGFBP2 and ALKBH5, which were highly expressed in gene-cluster C, the rest
were highly expressed in gene-cluster A and gene-cluster B (Figure 3D).


https://www.wcrj.net/wp-content/uploads/sites/5/2025/11/Supplementary-Figure-4.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2025/11/Supplementary-Figure-4.pdf

8

EXPRESSION AND PROGNOSTIC VALUE OF M6 METHYLATION REGULATORY FACTOR IN COLORECTAL CANCER

RNA splicing 1
protein polyubiquitination -

proteasomal protein catabolic process
proteasome-mediated |

ubiquitin-dependent protein catabolic process

covalent chromatin modification -

RNA splicing, via transesterification reactions -

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
mRNA splicing, via spliceosome 4

positive regulation of chromosome organization -

regulation of RNA splicing 1

nuclear speck

spindle

chromosomal region -

ubiquitin ligase complex
spliceosomal complex

protein acetyltransferase complex -
acetyltransferase complex -
cytoplasmic stress granule
spindle microtubule

PcG protein complex -

qvalue

0.001
0.002

0.003

Count
@
@ »
@ »
@ -

transcription coregulator activity ‘
ubiquitin-like protein transferase activity 4 .
ubiquitin—protein transferase activity - .
ubiquitin protein ligase activity -
ubiquitin-like protein ligase activity -
basal transcription machinery binding

El

basal RNA polymerase Il transcription machinery binding{

RNA polymerase binding
poly—purine tract binding{ ®
nucleocytoplasmic carrier activity{ @

A 0.02 0.04 0.06 0.08
GeneRatio

Figure 3. Biological function annotation and genomic characteristics. A, GO function enrichment analysis
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enrichment degree from low to high.

Continued

Construction of m6A-Scoring Signature

In order to more accurately analyze the changes of m6A modification pattern in CRC patients, we
constructed a scoring system to judge the changes of m6A modification pattern in each CRC patient.
958 CRC samples in the TCGA and GEO databases were divided into high rating group and low rating
group. The results of the survival analysis showed a very significant difference in survival between
the high- and low-score groups (p < 0.001), with better survival in the high-score group (Figure 4A).
TMB analysis demonstrated a significant survival difference between the high and low score groups
(p = 0.04) (Figure 4B). The Sankey Diagram shows the changes of the m6A cluster, gene cluster,
high and low rating groups, survival status, and other attributes of a single patient. The number
of survivors in the high rating group is higher than that in the low rating group, and gene clusters
A and C belong to the high-score group (Figure 4C). We analyzed the tumor somatic mutations in
the m6A high-score group and the m6A low-score group. In the m6A scoring group, the mutation
probability of APC was the highest (76 vs.73%), followed by the lower TP53 (57% vs. 65%) (Figure
4D and 4E). There was a significant difference in m6A score between m6A cluster A and B (p<0.05),
with the highest score in m6A cluster A and the lowest score in m6A cluster B (Figure 4F). There
was a significant difference in m6A score among gene clusters (p<0.05). The score was the highest
in gene-cluster C and the lowest in m6A cluster B (Figure 4G).
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Continued

Clinical correlation analysis showed that there was a significant difference in the m6A score in survival
status, and the m6A score was higher in the survival group (Figure 4H). The results of survival analysis showed
that the m6A score was closely related to clinical traits. There was a significant difference in the m6A score
among patients at the T3-T4 stage. The survival of the high-grade group was better than that of the low-grade
group (Supplementary Figure 5). The independent prognostic analysis included age, sex, T stage, and N stage.
The results showed that the m6A score was an independent prognostic factor for CRC (p < 0.05), and T stage
and N stage could also be used as independent prognostic factors for CRC (p < 0.05, Figure 4l and 4J).

Unique Immunotherapy Landscape of m6A Score

MG6A score is closely related to many immune cell infiltrations. In the immune correlation analysis, m6A
score was significantly negatively correlated with eosinophilic granulocytes, pre-B cell, immature den-
dritic cell, myeloid-derived suppressor cell (MDSC), macrophages, mast cell, NKT cell, natural killer cell,
T follicular helper cell, T helper (Th) 1 cell, and significantly positively correlated with CD56(dim) NK cell,
T helper (Th) 17 cell (Figure 5A).


https://www.wcrj.net/wp-content/uploads/sites/5/2025/11/Supplementary-Figure-5.pdf
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The progress of immune checkpoints has also attracted much attention. We analyzed the immune
checkpoints PD-L1 and CTLA-4. The difference analysis results showed that PD-L1 and CTLA-4 had a significant
difference in m6A score (p < 0.05), and the expression was higher in the low evaluation group (Figure 5B and
5C). Because the clinical characteristics of the high m6A-score group are better than those of the low m6A-
score group, and the close relationship between m6A score and immune cell infiltration, we further discussed
the response to immune checkpoint inhibitor (ICl) treatment represented by CTLA-4/PD-1 inhibitors in terms
of immunotherapy. The analysis results showed that there were differences in immunotherapy between the
high and low m6A-score groups (p < 0.05), and the high m6A-score group received anti-CTLA4 and anti-PD1
alone, which had a good effect (Figure 5D and 5E). In addition, MSI was also analyzed; the vast majority of the
high m6A-score group belonged to the MSS category, and the proportion of microsatellite instability (MSI-L)
cases was the same for the two groups (Figure 5H). MSI did not differ in m6A scores (Figure 5I). The above
results showed that the m6A score was significantly correlated with the immune response.
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Figure 5. Characteristics of m6A score in immune response. A, Correlation analysis between immune
cells and m6A score. Red is positive correlation, blue is negative correlation, and * is significant correla-
tion. B, Difference analysis of PD-L1 expression between m6A scores (p = 5.7e-11). C, Difference analysis
of CTLA-4 expression between m6A scores (p = 1e-05). D-G, M6A modification pattern in anti-PD-L1 and
anti-CTLA-4 immunotherapy. Figure D is Violin of m6A score and anti-CTLA-4 immunotherapy (p = 3.4e-
06), figure E is Violin of m6A score and anti-PD-1 immunotherapy (p = 0.004), figure F is Violin of m6A
score and anti-PD-1 combined with CTLA-4 immunotherapy (p = 0.1), and figure G is Violin of m6A score
and non-anti-PD-1 combined with CTLA-4 immunotherapy Violin (p = 1.2e-07). H, M6A score and MSI
histogram. I, M6A score difference between MSI (MSS vs.MSI-L: p = 0.23, MSS vs.MSI-H: p = 0.23, MSI-L
vs.MSI-H: p = 0.96).
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DISCUSSION

M6A modification of m6A methylation regulators also plays an important role in clinical, TME, and
immune response®. In this study, we first summarized the action mode and mechanism of m6A RNA
methylation regulators in cancer, determined three methylation modification modes according to 23
m6A methylation regulators, and explored their correlation with clinicopathological features and TME
infiltration, so as to obtain potential prognostic features, which is helpful to the formulation of immuno-
therapy strategies for CRC.

We divided the samples into three m6A subtypes by consensus clustering. Clinically, m6Acluster A
was significantly associated with older age, whereas m6Acluster C was significantly associated with NO
stage and showed an activated phenotype. CD4(+) T cell, CD56(dim) NK cell, pre-B cell, monocytes, NK
cell, neutrophilic granulocyte, plasmacytoid dendritic cell, regulatory T cell, T helper (Th) 1 cell, and
other immune cells showed significant differences in different m6A subtypes. m6A cluster A is characte-
rized by enrichment of monocytes, which is consistent with the immune desert phenotype®. m6Aclu-
ster B is characterized by lack of T cells, enrichment of participation in ubiquitin mediated proteolysis,
which is consistent with immune depleted phenotype®. m6A cluster C is characterized by CD4+ T cell
enrichment, which is consistent with the immune-excluded phenotype3®. Neutrophilic granulocyte plays
an anti-tumor or tumor-promoting role in a microenvironment-related manner. It shows a very signifi-
cant difference and low relative content in malignant tumors such as lung adenocarcinoma®, primary
GBM?8, and renal clear cell carcinoma®. CD4+ T cells often play an immunosuppressive role in cancer to
promote tumor?. It was found that CD4+ T cells accumulated continuously in the TME of CRC patients
and were immunosuppressed in combination with IL-10 and TGF-B*.. This indicates that m6A methyla-
tion modification pattern is significantly associated with immune activation and other pathways.

Further cluster analysis was carried out according to the transcriptional expression pattern, and th-
ree gene subtypes were obtained. IGFBP3, FMR, and HNRNPA2B1 were the most expressed in gene-clu-
ster B. METTL3, METTL14, WTAP, VIRMA, ZC3H13, RBM15, FTO, YTHDC1, and YTHDC were the lowest in
gene-cluster C. It was found that HNRNPA2B1, as a reader modified by m6A methylation, was identified
as an oncogene in head and neck cancer (HNC) because its overexpression can promote the epithelial-
mesenchymal transformation of HNC cells*. It has also been reported that the increased expression of
HNRNPA2B1 is related to risk and prognosis. Knocking down HNRNPA2B1 can accelerate apoptosis®.
HNRNPA2B1 is regulated by long non-coding RNA H19 in CRC, and the combination of the two will pro-
mote the occurrence of cancer®’. However, in ovarian cancer (OC), the prognosis of OC patients with low
expression of VIRMA or high expression of HNRNPA2B1 is better than that of the control group, which
confirms that VIRMA is a risk prognostic gene in OC and HNRNPA2B1 is a protective prognostic gene®.
The main role of VIRMA is mediating mRNA m6A methylation in the 3 ‘UTR and near stop codon*®, which
regulates the expression of Oncogene IncRNA in prostate cancer (PCa). The high expression leads to a
shortened disease-free survival time, resulting in poor prognosis and a significant correlation with the
recurrence of prostatic adenocarcinoma®’. FTO, also known as ALKBH9, is a member of the Fe(ll)/2-
oxoglutarate-dependent dioxygenase AlkB family*. In CRC, the expression of FTO is the lowest in gene-
cluster C with the best prognosis. Similarly, the group with high expression of GC FTO in gastric cancer
also has a worse prognosis*. However, its low expression in bladder cancer (BC) can promote cancer cell
metastasis and proliferation®. Through the study, we found that there were great differences in survival
among gene clusters. The survival of gene-cluster B was worse than that of gene-cluster A and C, which
could reliably predict the survival of patients. In order to more conveniently explore the relationship
between m6A modification mode and CRC TME, clinic, and immunity, we constructed the m6A-score
system and analyzed the prognosis, clinic, immunity, and TME of m6A modification mode.

We found the correlation between the m6A score and prognosis and immune cells. M6A score is
negatively correlated with most immune cell types, but it has been proven to be a favorable prognostic
factor in many reports on the relationship between immune cells and CRC survival rate®. This contradic-
tory result suggests that the m6A score may reflect the quality and functional orientation of the immune
infiltrate rather than its raw quantity. One possible biological mechanism is that a high m6A score deli-
neates a tumor microenvironment that is less immunosuppressive. Specifically, our analysis showed that
the m6A score was negatively correlated with cell types known for their roles in suppressing anti-tumor
immunity, such as myeloid-derived suppressor cells (MDSCs), macrophages, and regulatory T cells. Con-
versely, it was positively correlated with cell types like CD56(dim) NK cells and T helper 17 (Th17) cells,
which can mediate potent anti-tumor effects. Therefore, a high m6A score might signify a shift away
from a dense but ineffective or suppressed immune environment towards one that is less infiltrated
but more functionally potent and anti-tumorigenic. Furthermore, this hypothesis is consistent with our
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findings on immune checkpoints. The significantly lower expression of PD-L1 and CTLA-4 in the high-
score group indicates a less exhausted immune state. A less exhausted T-cell population would be more
effective at controlling the tumor, thus explaining both the better prognosis and the enhanced response
to anti-CTLA-4 and anti-PD-1 therapies.

Although there was no significant difference in TMB in CRC, the gene mutation rate was at a high
level. There was a significant difference in the expression of PD-L1 in m6A score. Immunotherapy also
achieved a better prediction effect in the high evaluation group. M6A score is the highest in m6Acluster
A, the highest in gene-cluster C, and the lowest in m6Acluster B and gene-cluster B. Combined with the
clinical characteristics of m6A score, we can classify CRC patients according to m6A subtype characte-
ristics and gene subtype characteristics. M6A score was positively correlated with high-level infiltrated
CD56* natural killer (NK) cells, monocytes, and T helper type 17 cells (Th17), which was consistent with
the results of previous studies. Previous studies have shown that CD16*/CD56 + NK can effectively pre-
dict the prognosis of patients after chemotherapy®2. In addition, it has been reported that Th17 can play
an auxiliary role in VEGF antibody treatment and effectively improve the sensitivity of tumors to VEGF
antibody®3. M6A score also has the characteristics of a gene and a somatic mutation. In CRC samples, APC
has a higher mutation rate in the high-evaluation group, whereas TP53 has a higher mutation rate in the
low-evaluation group. m6A cluster B is enriched in the ubiquitin-mediated protein hydrolysis pathway,
which is closely related to the high mutation rate of APC. APC/C-Cdc20 is the main switch and regulator
of mitosis, which acts on the ubiquitination of downstream targets under the control of phosphorylation
and specific inhibitors>*. APC mutation accumulation has been proven to lead to tumorigenesis in CRC*.

The MB6A score also shows significant associations with clinical features and immune checkpoints in
immunotherapy. The study indicates that the high evaluation group has a greater survival rate. Although
this feature has no guiding significance in the T1-T2 stage, it is very significant in the T3-T4 stage. Our study
shows that the m6A score can be used as an independent prognostic factor in patients with CRC. Previous
studies have also demonstrated that the m6A score has certain guiding significance in prognosis. The m6A
score characteristics constructed by Zhu et al*® can be an independent prognostic feature of BC patients
(HR = 1.198, 95% Cl: 1.031-1.390), and the high-score group has a better prognosis than the low-score
group. We also found that anti-CTLA-4 and anti-PD-1 immunotherapy alone were more effective in the
high evaluation group, while programmed cell death 1 ligand 1 (PD-L1) had higher expression in the low
evaluation group. Huang et al*’ also predicted the effect of immunotherapy in hepatocellular carcinoma
through m6A score characteristics, in which immunotherapy was better in high evaluation groups. The fin-
dings can be applied to the auxiliary evaluation of chemotherapy efficacy and clinical response. However,
whether m6A score characteristics can predict the prognosis of patients after chemotherapy needs further
research. PD-L1 was also found to be significantly correlated with low m6A-score in breast cancer (BRCA)%,
which may have a certain impact on the efficacy of immunotherapy. At present, our research has some
limitations. First, M6A modification mode involves not only 23 mRNA methylation regulators, but also
TME. TME is a complex entity with dynamic crosstalk among cancer, the matrix, and immunity. The analysis
only focusing on immune cells and immune genes is not comprehensive. Second, it is unclear whether the
m6A modification mode is suitable for patients after treatment. Third, this study is entirely based on com-
putational analyses of public datasets (TCGA and GEO) and lacks experimental validation and verification
in independent clinical cohorts. We identified key findings such as high mutation frequency of ZC3H13,
distinct immune infiltration characteristics of three m6A clusters, and the predictive value of m6A score
for immunotherapy response, but these observations have not been confirmed by wet-lab experiments.
For instance, we have not used RT-qPCR to validate the differential expression of core m6A regulators (e.g.,
ZC3H13, METTL3) between CRC tumor and normal tissues, nor have we applied IHC to verify the corre-
lation between m6A subtypes and TME infiltration markers (e.g., CD4+ T cells, MDSCs). Additionally, the
prognostic and therapeutic significance of the m6A score has not been tested in an independent clinical
sample set outside the existing public datasets. This limitation restricts the immediate translational impact
of our findings, as computational results—while hypothesis-generating—require experimental corrobora-
tion to support their reliability in clinical practice.

CONCLUSIONS

In this study, we comprehensively evaluated the m6A modification patterns of 23 m6A methylation regu-
lators. The differences in m6A modification patterns may be an important factor in the heterogeneity and
complexity of TME. Evaluating the modification pattern of m6A in a single CRC will enhance our understan-
ding of the infiltration characteristics of TME and provide a basis for guiding immunotherapy strategies.
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