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Abstract – Objective: Plasminogen Activator Inhibitor-1 has an important role in the pro-
gression of cancer. Although there are many studies about the relation of Plasminogen Activator 
Inhibitor-1 (PAI-1) with cancer, there exists only a few about showing the relation of PAI-1 with 
cancer stem cells. 

Materials and Methods: The purpose of this review is to explain the relation between PAI-1 
and carcinogenesis and to at- tract attention to the possible role of this protein in cancer stem cell 
pathway in the light of literature data.

Results: Tumor development harbors various biological processes such as resisting cell death, pro-
liferative signaling, angiogenesis, invasion, and metastasis. Cancer Stem Cells (CSCs), known as sub-
population of tumor cells, are located within the tumor tissue with a great therapeutic resistance, 
self-renewal capacity, potential of induction of tumor initiation and progression. Processes involved in 
epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) are important for cancer and 
CSC development since EMT increases plasticity in tumor cells; therefore, they are separated from other 
tissues. PAI-1 is the major inhibitor of plasmin and is associated with various diseases such as cardi- ovas-
cular diseases, neuronal cell loss, and progression of hallmarks of cancer. PAI-1, which has high expres-
sion levels in most cancer types, has a role in ECM remodeling and regulation of EMT. Recent studies 
about cancer stem cells reveal the probable importance of PAI-1 in stemness part- way.  

Conclusions: These studies might be considered as a guide for therapeutic approaches that will 
be focused in near future.
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epithelial-mesenchymal transition.

Department of Molecular Biology and Genetics, Haliç University, Faculty of Arts and Sciences, Istanbul, Turkey 

Meliha Burcu Irmak-Yazicioglu and Kübra Ergün contributed equally to this work.

M.B. IRMAK-YAZICIOGLU, K. ERGUN

INTRODUCTION

Plasminogen activator inhibitor-1 (PAI-1) is a 
major inhibitor of plasmin being an important 
regulator of fibrinolytic system. It is associated 
with various diseases such as depression, Alzhei-
mer’s, cardiovascular diseases, diabetes, insulin 
resistance and neuronal cell loss with remark-
able high expression levels1-6. PAI-1 is produced 
as a single-chain glycoprotein containing 379-

381 amino acids and with a mass of 45-47 kDa 
by various cell types such as adipose cells, liver 
cells, mesenchymal cells, fibroblasts, stromal and 
endothelial cells. Agonists like hormones, growth 
factors, endotoxins and cytokines modulate the 
synthesis and release of PAI-17-11. Besides Trans-
forming Growth Factor-β (TGF-β), interleukin-1 
(IL-1), Tumor Necrosis Factor-α (TNF-α), β-fibro-
blast Growth Factor (FGF) and 4G/5G polymor-
phism of PAI-1 have important roles in regulation 
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Cancer stem cell

Cancer stem cells (CSCs) are a subpopulation of 
tumor and are found in tumor tissue with great 
therapeutic resistance. They have self-renewal 
capacity, produce pluripotent new daughter cells 
of different phenotypes and regulate tumor initi-
ation and progression35-41. CSCs show high abili-
ty of plasticity, the capability to shift between a 
non-differentiated stemness state and differen-
tiated non-stemness state. The former is charac-
terized by limited tumorigenic potential whereas 
the latter is characterized by long term tumori-
genic potential42,43. Processes involved in EMT 
and ECM are important for cancer and CSC de-
velopment since EMT increases plasticity in tu-
mor cells; therefore they are separated from other 
tissues30, 44, 45. The rate of metastatic lesions is as-
sociated with increase in PAI-1 and Matrix metal-
loproteinase 2 (MMP2) levels which are involved 
in remodeling of ECM 28. Conversion of cancer 
cells into CSCs occurs via EMT activation, and it 
is observed that activated EMT markers and sig-
naling pathways such as Wnt and Hedgehog are 
similar in cancer and CSC, suggesting that similar 
pathways are shared in these cells20,35,46,47. In addi-
tion, TGF-β, the main regulator of PAI-1, is also 
the major promoter of CSC stemness of which is 
done through the stimulation of EMTs20,48,49. 

Role of PAI-1 in fibrinolytic system

Plasmin in fibrinolytic system remodels ECM ei-
ther directly through breakage of fibrin and col-
lagen, which provide mechanical stabilization to 
ECM, blood vessel wall, and basement membrane, 
or indirectly by activation of MMPs. Moreover, 
the clot formed in the bloodstream is dissolved by 
plasmin9,50-53. Plasmin is activated by tissue plas-
minogen activator (tPA) and urokinase plasmino-
gen activator (uPA). The main task of tPA-activat-
ed plasmin is to degrade the fibrins in the blood 
circulatory system, and uPA-activated plasmin is 
often required for pericellular proteolysis. uPA 
binds to Urokinase Plasminogen Activator Re-
ceptor (uPAR) on the cell surface. This interac-
tion causes intacellular and extracellular changes 
that increase the affinity of uPAR for Vitronectin 
(VN), and support its interaction with various 
integrins and stimulate various signaling path-
ways including mitogen-activated protein kinase 
(MAPK), tyrosine kinase, and Ras / ERK8,10,39,54-

56. Moreover, activation of uPAR receptor upon 
binding of VN can stimulate migration and sur-
vival through intracellular signaling35, 57. On the 
contrary, PAI-1 is the major inactivator of plasmin 

of PAI-1 expression7,10,12,13. Viewed from another 
side, in addition to its role in various diseases, 
PAI-1 stands out with high expression in cancer 
cells and cancer stem cells. Furthermore, high 
PAI-1 levels has been associated with cancer de-
velopment playing roles in angiogenesis, migra-
tion, and metastasis14,15. Important for cancer and 
CSC, the activation of Epithelial-Mesenchymal 
Transition (EMT) and remodeling of the Extra-
cellular Matrix (ECM) can be carried out by PAI-
116-18. Therefore, it appears that PAI-1 can play a 
critical role on cancer stem cell development. This 
review mainly focuses on the relation of PAI-1 
with fibrinolytic system, cancer, EMT, and cancer 
stem cells depending on the current literature.

Role of epithelial-mesenchymal transition 
and extracellular matrix in cancer

EMT is a process that plays a role in the develop-
ment of various cellular outcomes such as normal 
tissue development, embryogenesis, fibrosis and 
wound healing. Stimulation of EMT markers re-
sults in the transformation of the epithelial cells into 
mesenchymal cells leading to these processes. EMT 
markers can be regulated through various pathways 
including TGF-β, Smad4 and Wnt3. Important EMT 
markers such as E-cadherin and Vimentin, and sev-
eral transcriptional factors such as Snai1 and Twist 
are responsible for deregulating signaling in cancer 
cells causing resistant phenotype16-22. 

ECM provides structural foundation for tissue 
function and regulates cytokines. Under normal 
conditions, components of ECM including fibrin 
and collagen are degraded remodeling ECM. 
ECM degrading proteases such as matrix metallo-
proteinases (MMPs), Cathepsins, Heparanase and 
Serpins are among ECM remodeling enzymes. 
Transformation to malignant cells is not only de-
pendent on tumor growth and progression but also 
on changes in properties of tumor microenviron-
ment. Under pathologic conditions when cancer is 
initiated, uncontrolled activation of ECM compo-
nent evokes tumor growth, angiogenesis and me-
tastasis16-20, 23-25. The main ECM enzymes involved 
in degradation of the matrix are MMPs. They can 
cleave several ECM components. MMP-2, MMP-
3 and MMP-9 are shown to have role in invasion 
and metastasis23,25-29. Besides, most signaling 
pathways such as TGF-β, Hypoxia-inducible fac-
tor (HIF1), Cyclooxygenase-2 (COX-2) and Ex-
tracellular-signal regulated kinase 1/2 (ERK1/2) 
function in the regulation of ECM 24 as well as tu-
mor progression. Consequently, it is obvious that 
tumor progression and tumor spread are widely 
dependent on ECM and EMT16, 20, 23, 30-34. 
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PAI-1 levels in patients65,66. Blockage of PAI-1 in 
metastatic breast cells was shown to inhibit angio-
genesis revealing the significant relation between 
PAI-1 and angiogenesis15,35,67,68. Likewise, down 
regulation of PAI-1 in melanoma cell lines has an-
ti-migrative and anti-invasive effects58,61. Inacti-
vation of PAI-1 has potential to limit tumor angio-
genesis in an malignant Pleural Mesothelioma69.

5’ UTR 4G/5G polymorphism 
of PAI-1 and cancer

PAI-1 gene is located on chromosome 7q21.3-q22. 
A common polymorphism known as 4G/5G ap-
pears in the promoter region of the PAI-1 gene. This 
polymorphism of PAI-1 is known to modulate PAI-1 
levels in colorectal, prostate, lung, breast and ovary 
cancers12,70-77. Many reports indicate that allelic de-
letion creating 4G/4G genotype acts as an enhancer 
resulting in higher PAI-1 levels with reduced fibrino-
lytic activity than insertion 5G/5G polymorphism. 
Patients with endometrial cancer more commonly 
have 4G/4G genotype and higher PAI-1 levels. PAI-
1 levels correlate with tumor grade, with the 4G 
polymorphism being more common in stage 2 and 3 
tumors than in stage 1 tumors12,78. It is revealed that 
4G/4G genotype has a higher risk in breast cancer79. 
Breast cancer patients have been shown to have 
more 4G alleles than 5G alleles and the patients with 
4G alleles have increased PAI-1 expression levels. 

in fibrinolytic system. PAI-1 performs inhibitory 
function by binding covalently to uPA and tPA, 
which are responsible for the conversion of plas-
minogen to plasmin (Figure 1). Consequently, the 
decrease in plasmin levels results in the corrup-
tion of fibrinolytic system7,10,30,56, 58-60.

Relation of PAI-1 with cancer 

Tumor development harbors various biological 
processes such as resisting cell death, proliferative 
signaling, angiogenesis, invasion and metastasis. 
PAI-1 is highly expressed in most types of cancers 
including melanoma, breast, stomach, colorectal, 
head and neck cancers, and is known to be associ-
ated with metastasis, angiogenesis, migration and 
invasion9,19,58,61-64. It is associated with poor prog-
nosis in various types of cancer38. Biopsy samples 
of patients with head and neck cancer have high 
PAI-1 density creating short progression-free sur-
vival compared to that of patients having PAI-1 
with medium density and low-density. There ap-
pears to be a significant relationship between high 
PAI-1 levels and cancer recurrence after treat-
ment 64. Similar to this, another study indicates 
that PAI-1 has high expression in head and neck 
squamous cell carcinoma patients14. In addition, 
increased PAI-1 activity is observed in pancreatic 
cancer. Pancreatic carcinoma especially associ-
ated with high thrombosis is dependent on high 

Fig. 1. Regulatory role of Plasminogen activator inhibitor-1 (PAI-1) in the fibrinolytic system. Plasmin is involved in the de-
gradation of fibrin, activation of MMP, and remodeling of extracellular matrix (ECM). Urokinase plasminogen activator (uPA) 
and tissue plasminogen activator (tPA) play a role in the conversion of plasminogen to plasmin in the fibrinolytic system. This 
function of uPA and tPA can be modulated with PAI-1 resulting in inactivation of plasmin.



4

PLASMINOGEN ACTIVATOR INHIBITOR -1 (PAI-1) IN CANCER STEM CELLS

the EMT markers7,10,84. In a study, A549 (ade-
nocarcinoma of human alveolar basal epithelial 
cell) cells stimulated by TGF-β1 have decreased 
E-cadherin and increased N-cadherin and Vi-
mentin expression levels revealing deregulation 
of mesenchymal markers in carcinogenesis16,22,85. 
mRNA and protein levels of PAI-1 are found to be 
high in Carboplatin applied A2780 cells (human 
ovarian cancer cell line) with reduced E-cadher-
in and increased Vimentin, Snail, and Twist lev-
els. Reversely, PAI-1 inhibition causes increased 
E-cadherin and decreased Vimentin, Snail, and 
Twist expressions emphasizing the importance of 
EMT markers in cancer development59. Low PAI-
1 levels in PANC-1 (pancreatic cancer cell line) 
cells result in changed morphology, increased 
expression of some epithelial and neuronal genes 
and decreased expression of some mesenchymal 
genes in these cells. Moreover, increase in the lev-
els of E-cadherin and β-catenin is also observed86. 
In a study performed using MDA-MB-231 breast 

As with endometrial cancers, PAI-1 levels and 4G 
alleles were higher in the patients showing histo-
logical grade 3 tumors13,75,80. Increased PAI-1 levels 
with the 4G/4G polymorphism causes plasminogen 
to be in high amounts in oral squamous cell carci-
noma and that may be a predictor of the risk for oral 
cancers81,82. The 4G allele has also been shown to 
play an important role in the early stages of cancer81. 
In another study, 4G/5G and 4G/4G alleles were 
pointed out as a high risk for patients with polycystic 
ovary syndrome83. Consequently, studies depict the 
importance of 4G/5G polymorphism in modulating 
PAI-1 levels in many cancers (Figure 2). 

Relation of PAI-1 with EMT

PAI-1 is effective in remodeling of ECM and 
regulation of EMT markers16,30,31. TGF-β has an 
important role in the control of PAI-1 expression 
being the main regulator of PAI-1 and affecting 

Fig. 2. Relation of Plasminogen activator inhibitor-1 (PAI-1) with cellular events. PAI-1 plays important role in fibrinolytic sy-
stem, cancer, extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). It appears that PAI-1 is also important 
in cancer stem cell (CSC). Whether CSCs induce signaling pathways to increase PAI-1 levels or high PAI-1 levels cause CSC 
generation has to be determined. While 4G/5G polymorphism has role as a modulator of PAI-1 levels in various cancers, the 
effect of chemotherapy drugs and PAI-1 inhibitors on PAI-1 levels and CSCs have to be analyzed to improve the understanding 
of the significance of PAI1 in generation of CSCs.
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CONCLUSIONS

PAI-1 is a multifunctional protein that is locat-
ed in the intrinsic and extrinsic cellular signaling 
network. Knowing that PAI-1 is important in the 
regulation of EMT, ECM and cancer formation 
suggests that this protein may also have an im-
portant place in the formation of cancer stem cells. 
There are several limited emerging studies depict-
ing the function of PAI-1 in generation of CSCs as 
reviewed here. In order to understand the function 
of PAI-1 in CSC pathway, different types of CSCs 
should be analyzed. Determination of the function 
of PAI-1 in tumor plasticity is a wide research area. 
4G/4G polymorphism as a modulator of PAI-1 lev-
els causes increment in expression of this gene, and 
the relation of this polymorphism with key events 
such as CSC pathway, EMT and ECM regulation 
should be addressed in cancers. Different chemo-
therapeutic drugs in combination with PAI-1 inhib-
itors have to be applied to observe how the response 
of CSCs and the levels of PAI-1 change upon this 
application. It is a question to be resolved wheth-
er the change in PAI-1 levels results in the forma-
tion of CSCs or the development of CSCs causes 
the changes in PAI-1 levels (Figure 2). When these 
gaps are fulfilled, these studies will shed light on 
the relation between PAI-1 and CSC development. 
Consequently, all of these will also be a guide for 
therapeutic approaches to inhibit tumor plasticity.
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