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DIFFERENCES IN GENE EXPRESSION 
AND MOLECULAR PATHWAY 
REGULATION BETWEEN MYCN AMPLIFIED 
AND 2P GAIN NEUROBLASTOMA TUMORS
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INTRODUCTION

Cancer can be described as a disease of altered 
gene expression. Molecular stratification of tu-
mors by gene expression profiling was applied to 
a large number of human malignancies as a tool 
for developing prognostic factors and personal-
ized treatment1,2. In the present study, a microar-
ray gene expression profile was used to explore 
the relationship between MYCN oncogene status 
and neuroblastoma biology and to provide a pre-
liminary theoretical basis to search for biomark-
ers of malignant progression and new molecular 
therapeutic pathways. 

Neuroblastoma (NB) is a solid tumor typical-
ly occurring during childhood. The detection fre-
quency peak of NB is below 5 years of age3-5. NB 
is the most common extracranial malignant solid 
tumor arising from progenitor neural crest cells. 
Primary neoplastic lesions are located in the: ab-
domen (60-80%), chest (15%), neck (2-5%), pelvis 
(2-5%) with a tendency to tendency toward dis-
tant metastasis3-5. The malignancy of NB is very 
strongly connected with MYCN oncogene status. 
A poor outcome in NB is associated with MYCN 
amplification (MNA), whereas patients possessing 
a single copy of MYCN usually have a favorable 
prognosis. Approximately 25% of all NB cases are 
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Abstract – Objective: The malignancy of neuroblastoma (NB) is strongly connected with MYCN 
oncogene status. The gene expression profile was investigated in three subtypes of NB related to 
MYCN status (amplification - MNA, 2p gain and normal) in order to identify new candidate genes 
and to elucidate development of more aggressive forms of this pediatric tumor.

Materials and Methods: Human whole genome oligonucleotide expression microarrays were 
applied in the study.

Results: Hierarchical clustering analysis presented two distinct gene expression patterns cor-
responding to cases with and without MNA. For the first time, the 7 most upregulated genes and 
the 13 most downregulated genes in the MNA subgroup were selected in comparison to 2p gain 
tumors. 

Conclusions: The obtained result demonstrates that MYCN has a significant impact on ge-
nome-wide NB gene expression. Increasing MYCN level promotes cell growth and motility while 
counteracting differentiation and attachment. Interestingly, NB with 2p gain, in comparison to 
MNA and normal MYCN status, showed a higher expression level of genes involved in cell migra-
tion but downregulated genes involved in nervous system development. This finding may indicate 
that 2p gain tumors have more aggressive behavior with a higher tendency toward metastasis than 
MNA cases.   
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status. Patients were divided into 3 subtypes, ac-
cording to international guidelines16: with MNA 
(n = 5) (Figure 1a), with 2p gain (n = 5) (Figure 
1b), with normal MYCN status (n = 5) (Figure 1c). 
The clinical disease stage assessed according to 
the International Neuroblastoma Staging System 
(INSS), risk group and age of the study cohort for 
expression analysis were included in Table 1. The 
study was approved by the Ethics Committee.

Tissue sample collection

NB tumor tissue samples (0.2-0.5 cm3) obtained 
after surgeries were immediately washed with 
0.9% sodium chloride (NaCl) RNase-free saline 
and stored at −80°C for further testing.

RNA sample preparation

Total RNA was extracted from NB samples using 
TRIzol (Invitrogen, Thermo Fisher Scientific Inc., 
Carlsbad, CA, USA) according to the manufactur-
er’s instructions. The concentration and quality of 
total RNA were measured by ultraviolet absorbance 
(NanoDrop® ND-1000 UV-Vis Spectrophotometer, 
Thermo Fisher Scientific Inc., Waltham, MA, USA).

Screening gene expression profiles

Human whole genome oligonucleotide microarrays 
were applied in the study. Sample labeling and hy-
bridization were performed in accordance with the 
SurePrint G3 Human Gene Expression 8x60K v2 
Microarray Kit (Agilent Technologies, Santa Clara, 
CA, USA) experiment protocol. The total RNA was 

affected with MNA. This chromosomal alteration 
is the most significant unfavorable genetic factor 
correlated with high progression risk5-10. The Myc 
family containing MYCN is a group of transcrip-
tion factors that play a critical role in regulating 
metastasis molecular pathways concerned with 
cell adhesion, motility, invasion, and degradation 
of extracellular matrix10,11. Therefore, the statement 
that MYCN has a profound effect on NB cell behav-
ior is indisputable. Besides MNA, also “low-level” 
MYCN variants, like the gain of the MYCN locus 
on the short arm of chromosome 2 (2p24) named 
“2p gain”, have been detected in NB12-15. Knowl-
edge about associations regarding 2p gain and NB 
patient outcome is still insufficient, and its clinical 
significance is unclear. Therefore, the gene expres-
sion profile in three subtypes of NB were examined 
in order to identify new candidate genes, that may 
be related to MYCN status and the development 
of more aggressive forms of this pediatric tumor. 
Microarray gene expression profiling was used as 
an efficient and effective tool for the classification 
of NB on the basis of transcriptional patterns.

MATERIALS AND METHODS

Tumor tissue samples

In this study, 15 NB tumor tissue samples were 
collected from patients diagnosed in the Depart-
ment of Pediatric Oncology and Hematology at 
the University Children’s Hospital in Krakow 
from 2011 to 2016. All patients who had not been 
treated with radiotherapy or chemotherapy pri-
or to surgery were included. Children with NB 
were enrolled to the study based on the result of 
a fluorescence in situ hybridization test for MYCN 

Fig. 1. Fluorescence in situ hybridization images of MYCN status in NB nuclei. A, MNA; B, 2p gain; C, normal; D, set of 
molecular probes. 
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expression patterns between NB subtypes with 2p 
gain and with normal MYCN status (Figure 2). The 
microarray expression analysis was focused main-
ly on indicating statistically important differences 
between the MNA and 2p gain NB subtypes, as 
alterations specific to NB and affected patients’ 
outcomes. Initially, alterations in the expression of 
217 transcripts were observed. Genes with loci on 
the X or Y chromosomes were excluded to elim-
inate sex-dependent differences. Genes and also 
long non-coding RNAs with log fold change (FC) 
below 2 were removed. Finally, the expression level 
of 7 genes was upregulated in MNA NB and 13 
genes were downregulated. In Table 2, 20 genes 
with the highest log FC between the MNA and 2p 
gain subgroups along with the trends between each 
NB subtype are presented17-19.

It was observed a co-occurrence of gene upregu-
lation in the MNA subgroup and downregulation in 
the normal and 2p gain subgroups (Table 2). These 
genes were the most downregulated in the 2p gain 
subgroup. The exception was the PTGIS gene, which 
was upregulated in MNA and in the 2p gain NB sub-
type in contrast to the normal subgroup (Table 2). 

amplified from each sample and used as a Cyanine 3 
labeled analog of a uridine triphosphate (Cy3-UTP) 
marker. The slides were scanned using the Agilent 
Technologies SureScan Microarray Scanner G2600D.

Gene expression and functional analysis

Agilent Feature Extraction v10.7.3.1 software was 
used for raw data extraction. GeneSpring GX v12.1 
software was used for quantile normalization and 
subsequent processing of the original data. Differenc-
es between gene expression in samples from study 
groups were validated through fold change screening. 
The significance level of the test was selected as fold 
changes >1.5 (<-1.5) and p-values <0.05. 

RESULTS

The hierarchical clustering analysis presented two 
distinct gene expression patterns, which corre-
spond to cases with and without MNA (Figure 2). 
Moreover, it demonstrated similarity in the gene 

TABLE 1. Most common described methods for detection of BRAF V600 in clinical setting.

MYCN status Age (months) INSS Risk group Sex

MNA
 5.5-72.5 3 (n = 1) 

High (N = 5)
 ♀ (n = 5)

 median 25.1 4 (n = 4)  ♂ (n = 0)

 
5.5-37.6

 1 (n = 2) Standard (N = 2) ♀ (n = 1)
2p gain 

median 24.7
 3 (n = 2) Intermediate (N = 2) ♂ (n = 4) 

  4 (n = 1) High (N = 1) 

 
11.2-126.6

 2 (n = 1) Standard (N = 2) ♀ (n = 1)
Normal 

median 56.7
 3 (n = 2) Intermediate (N = 1) ♂ (n = 4)

  4 (n = 2) High (N = 2)

Fig. 2. Hierarchical clustering analysis demonstrating two distinct patterns of relative gene expression in NB with MNA and 
without (2p gain and normal MYCN status).
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TABLE 2. Most common described methods for detection of BRAF V600 in clinical setting.

UF-unfavorable; F-favorable.

Gene log FC  Trend in NB subtypes Prognostic  Biological function
 symbol MNA vs.     marker
 2p gain MNA vs. MNA vs.   2p gain
  2p gain normal vs. normal

ESPNL 3.651 ↑ ↑ ↓ None Actin filament binding
POU4F1 2.945 ↑ ↑ ↓ None Developing sensory nervous system; 
       promote the growth of cervical tumors
SPINK1 2.484 ↑ ↑ ↓ Renal (UF)  Tumor-associated trypsin inhibitor
     and  urothelial  (TATI) is identical to pancreatic 
     cancer (F)  secretory trypsin inhibitor encoded by
       SPINK1 gene; negative regulation of 
       calcium ion import and nitric oxide 
       mediated signal transduction
SLC7A5 2.265 ↑ ↑ ↓ Renal and  Cell differentiation, cellular amino
     lung cancer   acid metabolic process, nervous system 
     (UF)   development
DPF3 2.234 ↑ ↑ ↓ None Transcription regulation; 
       nervous system development
PTGIS 2.126 ↑ ↑ ↑ Renal and  Apoptotic signaling pathway; cellular
     urothelial   response to hypoxia; negative regulation
     cancer (UF)  of inflammatory response; positive 
       regulation of angiogenesis 
PEX5L 2.048 ↑ ↑ ↓ None Regulation of cAMP-mediated signaling
MAMDC2 -2.094 ↓ ↓ ↑ Thyroid cancer Proteoglycan
     (UF) 
MAEL -2.128 ↓ ↓ ↑ None Cell differentiation; cell morphogenesis; 
       gene silencing by RNA; intrinsic 
       apoptotic signaling pathway in response 
       to DNA damage; negative regulation of 
       apoptotic process; negative regulation 
       of transcription
DAPL1 -2.186 ↓ ↑ ↑ Cervical  Apoptotic signaling pathway; cell
     cancer (F)  differentiation; negative regulation 
       of autophagy
SLC12A5 -2.214 ↓ ↓ ↓ Glioma (UF) K-Cl maintains homeostasis in neurons; 
       dendritic spine development
SIGLEC11 -2.286 ↓ ↓ ↑ None Cell adhesion; immunosuppressive 
       signaling
ALX1 -2.462 ↓ ↓ ↑ None Negative regulation of transcription;
       neural crest cell migration; neural tube 
       closure; positive regulation of epithelial 
       to mesenchymal transition
FNDC9 -2.518 ↓ ↓ ↑ None Fibronectin; cell adhesion, growth, 
       migration and differentiation
TEKT2 -2.554 ↓ ↓ ↑ Renal cancer (F) Cilium movement involved in cell motility
MMD2 -2.568 ↓ ↓ ↑ None Positive regulation of neuron differentiation; 
       positive regulation of Ras protein signal 
       transduction
ASIC2 -2.677 ↓ ↑ ↑ None Negative regulation of apoptosis; central 
       and peripheral nervous system 
       development
GFRA2 -2.728 ↓ ↓ ↑ None Neuron survival and differentiation; 
       MAPK cascade; negative regulation 
       of protein autophosphorylation 
HYDIN -3.400 ↓ ↓ ↑ None Cilia motility; epithelial cell development; 
       ventricular system development
GPM6A -4.034 ↓ ↓ ↑ None Differentiation and migration of neuronal 
       stem cells; neuronal plasticity; neurite 
       and filopodia outgrowth
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been described as prognostic markers in different 
types of cancers (Table 2). Moreover, studies un-
dertaken by Budhram-Mahadeo on NB cell lines 
showed that overexpression of gene POU4F1, also 
known as Brn-3a, protects cells from apoptosis24. 
Additionally, it was found that SPINK1 gene is 
highly expressed in many cancers and is associated 
with a poor prognosis24. Overexpression of SPINK1 
promotes metastatic behavior especially by matrix 
metalloproteinase activation as well as by PI3K/
AKT and MAPK/ERK signal regulation25. In this 
study, the genes SLC7A5 and SLC12A5 were also 
selected. Glutamine transporters including the 
solute carrier (SLC) family were found to be can-
cer-promoting targets and overexpressed in aggres-
sive cancers. Glutamine plays a role in maintaining 
the activation of mTOR kinase and is required for 
maintenance of mitochondrial membrane potential 
and redox control26,27. Elorza et al28 presented that 
upregulated SLC7A5 increases mTORC1 activi-
ty. Moreover, El Ansari et al29 found that SLC7A5 
mRNA biosynthesis was associated with the ex-
pression of the oncogene c-MYC that regulates cel-
lular metabolism and correlated with larger breast 
tumor size. In addition, the gene SLC12A5 is a 
neuronal marker of aggressive cancer stem cells in 
glioblastoma30. Deficiency of SLC12A5 expression 
leads to the development of immature neurons with 
a reduction in active synapses31. Li et al32 demon-
strated that MAEL overexpression was correlated 
with cell proliferation, tissue invasion and drug 
resistance of colorectal cancer cells by inducing 
epithelial-mesenchymal transition and stem cell 
properties. Furthermore, higher levels of ALX1 ex-
pression was associated with a poor prognosis, dis-
tant metastasis and progression of lung cancer and 
osteosarcoma33,34. A recent study showed that ion 
channels may play an important role in cancer cell 
proliferation, apoptosis, invasion, and migration35. 
Zhou et al36 supported this concept by finding that 
upregulation of ASIC2 promotes colorectal cancer 
invasion and metastasis. An important discovery 
made by Gu et al37 suggested that high levels of 
GFRA2 expression prompt pancreatic cancer cell 
growth and chemoresistance through inactivation 
of suppressor gene PTEN. Additionally, Michiba-
ta et al38 and Li et al39 suggested that suppression 
of GPM6A gene expression in human embryonic 
stem cells provokes a decrease in the expression of 
neuroectodermal-associated genes, the number of 
neural stem cells as well as migration.

Many studies support that MYCN is a gene 
promoting cancer cell growth, motility and in-
vasiveness40,41. Moreover, in the literature some 
genes have been described as direct MYCN tar-
gets. MYCN as a transcription factor upregu-
lates genes involved mainly in cell cycle regula-

This finding may indicate that overexpression of 
this gene is strongly linked to MYCN copy num-
ber changes. 

The second co-occurrence related to genes 
downregulated in MNA NB. The expression of 
these genes was higher in the normal and 2p gain 
subtypes (Table 2). The highest level of expression 
of these genes was observed in the 2p gain NB. A 
different pattern was presented by gene SLC12A5, 
which was underexpressed in NB with MYCN 
multiplication – MNA and 2p gain in comparison 
to normal MYCN status (Table 2). This was con-
trary to two other genes, DAPL1 and ASIC2, that 
were upregulated in tumors with MYCN multipli-
cation, with the highest expression in the 2p gain 
subgroup (Table 2).

DISCUSSION 

Advances in molecular medicine have resulted 
in an improved ability to predict patients’ risk 
of treatment failure, relapse or death. Molecular 
stratification of tumors by gene expression pro-
filing was applied to a large number of human 
cancers. The commercially available expression 
microarrays aided to create personal treatments 
for patients at the individual level.

In the present study, differences in gene expres-
sion profiles were analyzed to explore the relation-
ship between MYCN status and NB biology. The 
aim was to identify new biomarkers for malignant 
progression and new molecular therapeutic path-
ways in two unfavorable genetic subtypes of NB 
patients – those with MNA and those with 2p gain. 

The hierarchical clustering analysis demon-
strated two distinct gene expression patterns - one 
corresponding to cases with MNA and the other to 
those without MNA (2p gain and normal MYCN 
status). These results are in accordance with stud-
ies conducted by other researchers7,20-22. However, 
for the first time a similarity in the gene expres-
sion patterns of 2p gain and normal MYCN status 
NB was demonstrated, contrary to MNA. Further-
more, to emphasize the importance of two of the 
most important genetic alterations affecting NB 
patient outcomes, a comparison of gene expres-
sion between the MNA and 2p gain subgroups 
was conducted. There were selected the 7 most 
upregulated genes (ESPNL, POU4F1, SPINK1, 
SLC7A5, DPF3, PTGIS, PEX5L) and the 13 most 
downregulated genes (MAMDC2, MAEL, DAPL1, 
SLC12A5, SIGLEC11, ALX1, FNDC9, TEKT2, 
MMD2, ASIC2, GFRA2, HYDIN, GPM6A) in the 
MNA subgroup to compare with the 2p gain tu-
mors. Among all the genes, 7 (DAPL1, MAMDC2, 
PTGIS, SLC7A5, SLC12A5, SPINK1, TEKT2) have 
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