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Abstract – Objective: Osteosarcoma (OS) is a malignant tumor in children, which seriously endangers 
children’s health. However, few studies have been conducted to identify potential targets of OS. The purpose 
of this study is to identify the protein markers in plasma that are associated with the occurrence, metastasis, 
and prognosis of OS by combining multinomial analysis and constructing regression models. 

Materials and Methods: The miRNA expression profile GSE65071 dataset and protein ex-
pression (GSE78192) dataset were downloaded from the Gene Expression Omnibus (GEO) da-
tabase. The differentially expressed proteins (DEPs) and miRNAs (DEMIs) were identified from 
primary OS vs. normal control, and metastatic OS vs. primary OS, respectively. A miRNA-protein 
network was constructed based on miRNA-protein pairs. Functional analysis of DEPs involved 
in miRNA-protein network was utilized to obtain insights into the functions of the network. 
Subsequently, we screened out the genes differentially expressed similarly in both plasma and 
osteosarcoma tissues of OS patients. Eventually, genes in miRNA-protein network closely relat-
ed to survival were identified by the intersection of lasso regression and K-M survival analysis, 
and Cox regression model was constructed for further analysis.    

Results: A total of 277 DEMIs and 50 DEPs, 3 DEMIs and 254 DEPs were identified with contact 
of OS occurs and metastasis. Furthermore, 11 proteins involved in miRNA-protein network were con-
firmed to exhibit the same dysregulation in both primary OS plasma and tissue and 3 proteins exhibit 
dysregulation in metastatic patients. Moreover, for patients without metastasis, UBE2S and ATXN3 
not only have the same differential expression trend in both plasma and tumor tissues of OS patients, 
but also are closely related to the survival time of patients.   

Conclusions: In OS plasma, 11 proteins, including UBE2S, ATXN3 and LARP6 are potential plas-
ma markers for the diagnosis of OS. Totally 3 proteins (UGT3A1, IGF1R and SLC7A1) were the poten-
tial plasma markers to predict metastasis of OS. Furthermore, the C-index and the AUC at 4-year of 
Cox regression model were 0.79 and 0.97, suggesting good reliability and potential of UBE2S and 
ATXN3 for prognostic prediction and targeted therapy of primary OS.
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ics and miRNomics is not only reliable and effec-
tive, but also can provide more intuitive diagnosis, 
stratification, and prognostic evaluation for patients.

However, few studies have been focused on 
combination analysis of proteomics and miRNom-
ics to find potential protein markers in plasma to 
investigate the pathophysiological process of OS. In 
the present study, the miRNAs and proteins differ-
entially expressed in plasma were investigated by 
using miRNA dataset of GSE65071 and protein mi-
croarray dataset of GSE78192 from Gene Expression 
Omnibus (GEO) database. We integrated plasma 
proteomics with miRNomics which may help identi-
fy reliable and effective markers to provide valuable 
evaluation for the stratification and prognosis of OS 
patients. The flowchart of this procedure is present-
ed in Figure 1. After predicting the miRNA-protein 
interaction pairs, the present study successfully es-
tablished the miRNA-protein network from primary 
OS vs. normal control, and metastatic OS vs. pri-
mary OS, respectively. Furthermore, to investigate 
the differences of gene expression between plasma 
and tumor tissue, 10 datasets were downloaded 
from GEO and TARGET database and differential-
ly expressed genes were identified for searching for 
suitable biomarkers. Gene ontology (GO) function-
al analysis, Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) and Reactome pathway enrichment 
analysis and the interactions between proteins were 
also performed to construct the miRNA-hubprotein 
regulatory module to better understand the patho-
genesis of OS. Totally, 11 plasma proteins, including 
UBE2S, ATXN3 and LARP6 are potential plasma 
markers for the diagnosis and 3 proteins (UGT3A1, 
IGF1R and SLC7A1) were potential markers to me-
tastasis prediction of OS. Furthermore, the C-index 
and the AUC at 4-year of Cox module were 0.79 
and 0.97 respectively, suggesting a good reliability 
of UBE2S and ATXN3 for prognosis prediction of 
primary OS. In this study, we systematically and 
extensively investigate the plasma miRNA-protein 
expression profiles in evaluation of OS occurence, 
metastasis and prognosis.

MATERIALS AND METHODS

Microarray data and preprocessing

The miRNA profile of GSE65071, containing 15 
normal plasma, 10 primary OS plasma and 10 met-
astatic OS, was generated using the platform of 
GPL19631 (Exiqon human V3 microRNA PCR pan-
el I+II) and the protein profile of GSE78192, con-
taining 3 normal plasma, 3primary OS plasma and 
3 metastatic OS plasma, was based on the platform 
of GPL21502 (Invitrogen ProtoArray v4 human pro-

INTRODUCTION

Osteosarcoma (OS), which may originate from mes-
enchymal stem cells, is the most common prima-
ry malignant bone tumors in children and adoles-
cents1. OS can occur at any age and is common in 
adolescents or children under 20 years of age2. The 
application of neoadjuvant chemotherapy in 1970s 
significantly improved the survival rate of OS pa-
tients, five-year survival rate for non-metastatic OS 
patients increased from less than 20% to 65-70%3,4. 
However, the overall-survival rate did not improve 
considerably from 1984 to 2004 due to drug resis-
tance and side-effects of chemotherapeutics5. Till 
now, reliable, and noninvasive biomarkers are not 
available for the detection of the presence or pro-
gression of OS, assessment of therapy response, or 
prediction of upfront prognosis. Therefore, identifi-
cation of sensitive, specific, and less invasive bio-
markers to detect OS at an early stage has become 
one of the most significant challenges in the man-
agement of OS.

 Some studies have indicated that potential 
plasma and tumor tissues microRNAs (miRNA), 
which are a class of small non-coding RNA mole-
cules negatively modulate protein expression at the 
post-transcriptional level and associated with tum-
origenesis, play important roles in drug resistance, 
metastasis, recurrence and prognosis in multiple 
types of tumor6-9. The effects of miRNAs on pro-
tein expression are diverse. As considerable repres-
sors of gene expression, miRNAs are involved in an 
abundant range of biological processes such as cell 
cycle control, apoptosis, and physiological process-
es by regulating post-transcriptional process of gene 
expression10-12. Recent evidence indicates that miR-
NAs interact with Argonaute protein family, ribo-
nuclease type III endonuclease and arginine protein 
in base-pair conformation to form RNA-induced 
silencing complex (RISC) to degrade or downreg-
ulate proteins13. Therefore, there are increasingly 
number of studies are attempting to investigate the 
mechanism of tumor and the potential of clinical ap-
plication through the regulation between miRNAs 
and proteins14-16. To identify candidate tumor mark-
ers circulating in the blood or cerebrospinal fluid 
that can improve the diagnosis, patient stratification 
and early detection of recurrent diseases, Kaid et al17 
screened and analyzed the function and relationship 
between differential miRNAs and proteins from 
four tumor cell lines. Furthermore, Erhart et al18 
integrated proteomics/miRNomics to find a reliable 
immunotherapy target for glioblastoma. Moreover, 
except that the slope and shape of the protein re-
sponse curve may change, the inhibition of protein 
translation by miRNA itself does not affect the level 
of mRNA19. Therefore, integrating plasma proteom-
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miRNA-protein network construction 
and analysis

Target genes of DEMIs were predicted and analyzed 
through the miRNET (www.mirnet.ca), a web tool 
based on eleven different miRNA databases20. To 
demonstrate how the miRNAs regulate proteins in 
plasma of OS, the DEPs, targeted by DEMIS, were 
selected to construct the miRNA-protein network, 
and the miRNA-protein subnetwork was generated 
using the Molecular Complex Detection (MCODE) 
plug-in Cytoscape. 

Functional analysis of genes involved 
in miRNA-protein network

Gene Ontology (GO), which includes the cellular 
component (CC), molecular function (MF), and bio-
logical process (BP)21, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Reactome pathway en-

tein microarray lot HA20085; Carlsbad, CA, USA). 
Probe names in protein expression profiles were 
converted to the gene symbol. In addition, the av-
erage of expression was taken when multiple probe 
names correspond to one gene symbol.

Differential expression analysis

The miRNAs in the GSE65071 dataset were an-
notated using the REF_ID, PROBE_ID, PANEL, 
WELL, miRNA_ID, POT_ID, and SEQUENCE by 
the GPL19631. The proteins in the GSE78192 data-
set were annotated by the GPL21502 and BioDBnet 
(https://biodbnet-abcc.ncifcrf. gov/db/db2db. php). 
Only miRNAs and proteins with|log2 fold change 
(FC)|> 1. 0 and p-value< 0. 05 were regarded as DE-
MIs and DEPs. DEMIs and DEPs were identified 
using LIMMA (version: 3. 42. 2), an R package that 
processes the normalized data and analyzes gene 
differential expression.

Fig. 1. Overview of workflow of 
miRNA-protein network analy-
sis. DEMIs, differentially ex-
pressed proteins microRNAs; 
DEPs, differentially expressed 
proteins. GO, gene ontology; 
KEGG, kyto encyclopedia of 
genes and genomes.
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miRNA-protein network construction 
and analysis 

We use miNET website to select DEPs that involved 
in DEMI target genes and visualize them on Cyto-
scape software. Circles are DEPs and the triangles 
are DEMIs. Light color means logFC>1, and dark 
color means logFC<-1. The thicker the edge will be 
if the combined_score is higher (Figure S1). In to-
tal, 36 DEPs are targeted by multiple DEMIs (Ta-
ble 1). One module was identified, including PASK, 
TTK, has-mir-192-5p and has-mir-215-5p. In meta-
static OS vs. primary OS, 15 proteins were targeted 
by multiple DEMIs (Table 2).

Functional analysis and pathway 
analysis of genes in miRNA-mRNA
network 

A total of 36 DEPs were involved in the miR-
NA-protein network. To further analyze the func-
tional characteristics of the 36 DEPs in the network, 
we used the ClueGO plug-in Cytoscapeto to per-
form GO, Reactome and KEGG pathway analysis. 
Overall, 39 functional enrichment terms from GO 
were observed to be divided into 2 parts, includ-
ing 35 biological processes (BPs) and 4 molecular 
functions (MFs) (Figure S2). Top 5 BPs included 
“protein autophosphorylation”, “long-term synap-
tic potentiation”, “cell death in response to oxida-
tive stress”, “intrinsic apoptotic signaling pathway 
in response to oxidative stress”, and “negative reg-
ulation of cellular response to insulin stimulus”. 
MFs included “tau protein binding”, “protein phos-
phorylated amino acid binding”, “phosphotyrosine 
residue binding” and “protein kinase A binding”. 
In our analysis, 34 KEGG pathways and 32 Reac-
tome pathways were also observed to be signifi-
cantly enriched (Figure S3). Major pathways as-
sociated with osteosarcoma tumor included “Foxo 
signaling pathway”, “Relaxin signaling pathway” 
and “AGE-RAGE signaling pathway in diabetic 
complications”. 

Protein-protein interaction (PPI) 
network construction and analysis 
of primary OS

PPI network of 36 DEPs involved in miRNA-pro-
tein network was constructed by STRING web. 
MCODE identified one significant module in the 
PPI network (Figure S4). The module consisted of 6 
target genes, including GSK3A, PRKCZ, PRKCA, 
IKBKB, PDPK1, IRS1, and GSK3A was identified 
as hub-gene in the module.

richment analysis22 were used to identify primary 
function and pathways of DEPs involved in miR-
NA-protein network using the ClueGO plug-in Cy-
toscape. 

Protein-protein interaction (PPI)
network construction and analysis

In order to identify the interaction network of genes 
involved in miRNA-protein network of OS, Search 
Tool for the Retrieval of Interacting Genes data-
base (STRING) was utilized to construct the PPI 
network23. PPI networks of differentially expressed 
genes were visualized using Cytoscape software 
3.7.1 (http://cytoscape.org/). In the networks, nodes 
represent proteins and edges represent interactions 
between proteins. Subnetwork was identified by 
MCODE. 

DEGs in tumor tissue

To further investigate the difference of DEGs be-
tween plasma and tumor tissue. The DEGs between 
primary OS and normal bone were selected from 
GSE14359 by LIMMA package. For metastatic OS, 
DEGs in GSE85537 were used to compare with 
DEGs in plasma to obtain the genes of overlapping 
part. Taking p<0.05 and | logFC | > 1 as the thresh-
old. Subsequently, we verified whether DEGs with 
the same expression trend in plasma and tumor tis-
sue had a significant effect on the overall surviv-
al rate and disease-free survival of OS patients in 
GSE39055 and Therapeutically Applicable Research 
To Generate Effective Treatments (TARGET) data-
base. The Kaplan-Meier one-way survival, least ab-
solute shrinkage and selection operator (lasso), pro-
portional hazards model (COX) and time-dependent 
receiver-operating characteristic (ROC) curve were 
performed by R package survival (version 3.1-11), 
survminer (version 0.4.6), glmnet (version 4.0) and 
survivalROC (version 1.0.3). A p-value < 0.05 was 
considered as statistically significant.

RESULTS

Differential expression analysis

Finally, 277 DEMIs, 50 DEPs were detected in OS 
vs. normal, 211 DEMIs, 26 DEPs up-regulated and 
66 DEMIs, 23 DEPs down-regulated (Figure 2). 
Compared with primary OS, a total of 3 DEMIs, 
254 DEPs were determined between metastatic 
OS. The top miRNAs and proteins are listed in Ta-
ble S1-S4.

https://www.wcrj.net/wp-content/uploads/sites/5/2021/07/supplementary-01-23416.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2021/07/supplementary-02-23416.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2021/07/supplementary-03-23416.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2021/07/supplementary-04-23416.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2021/06/Supplementary-Tables-1-4.pdf
https://www.wcrj.net/wp-content/uploads/sites/5/2021/06/Supplementary-Tables-1-4.pdf
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Then, the lasso regression analysis, Kaplan-Meier 
one-way survival, COX proportional hazards mod-
el and time-dependent ROC methods were used for 
analysis. Reliably, both K-M one-way survival and 
lasso regression found that two genes (ATXN3 and 
UBE2S) were significantly correlated with over-
all-survival (Figure 3), which has low correction 
(correlation=0.272 and variance inflation factor 
(VIF)=1.032824) in Figure 4B. Subsequently, mul-
tivariate Cox regression module was applied to pre-
dict the prognosis, and the sample characteristics of 

DEGs in tumor tissue and survival analysis 

Genes with the same expression trend in both plas-
ma and tumor tissue are considered as overlapped 
genes. A total of 11 overlapped genes in primary OS 
and 3 overlapped genes in metastatic OS (Table 3). 

Fig. 2. Volcano plot of DEMIs and DEPs. A, Volcano plots of DEMIs and DEPs in primary OS vs. normal. B, Volcano plots of 
DEMIs and DEPs in metastatic OS vs. primary OS. Red dots represent upregulated and green dots represent downregulated 
DEMIs and DEPs.  

TABLE 1. Totally 36 DEPs were involved in Primary OS 
vs. normal miRNA-protein network.

Symbol	 Regulation

TG, SELENOI, PRKD2, PDPK1, 	         up
GRK7, LARP6, HOMER2, PRKCZ, 
UBE2S, IRS1, STK25, SMAD2, 
CSNK1G2, STK24, SMAD3, MAPK1,
SNAP25, GSK3A
THOP1, STK16, ZAP70, PRKCA,	         down 
CLK3, IKBKB, ATF2, ATXN3, 
LUC7L, COPZ1, TTK, TOM1, DYRK3,
PASK, MAPK14, CENPB, PRKACA, 
RTKN

TABLE 2. In total, 15 DEPs were involved in Metastatic 
OS vs. Primary OS miRNA-protein network.

Symbol	 Regulation

ZNF616, UGT3A1, TNIP1, SLC7A1,	         up 
RPS6KA3, PLEKHA3, NDST1, 
MAP3K8, IGF1R
DRAM1, DDIT4, COX20, CDKN1B, 	         down 
HOMER2
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played patient clinical information and expression 
values on the same abscissa (Figure 5). Consistent 
with multivariate Cox regression analysis, high-risk 
group of modules corresponded to poor prognosis 
and ATXN3 demonstrated greater consistency with 
patient outcomes. 

DISCUSSION

The expression level of proteins can be regulated by 
miRNAs in a variety of ways, resulting in the differ-
ential expression of proteins that may not be consis-
tent with the trend of mRNA24. Previous studies have 
confirmed that it is feasible and useful of a combina-
tion of proteomics and miRNomics approach for the 
investigation of tumor factors in medulloblastoma 
and glioma17,18. Integrating proteomics/miRNomics 
has been reported as a reliable method for exploring 
mechanisms of local microenvironmental changes25. 
The discovery of the pathogenesis and development 
of OS will provide important clues in the diagnosis, 
treatment and prediction of prognosis. In the present 
study, in order to find plasma markers closely relat-
ed to OS occurrence, metastasis and prognosis, we 
downloaded two types of microarray datasets: pro-
tein expression profile and miRNA expression pro-
file from the GEO database and integrated plasma 
proteomics/miRNomics. Compare to normal group, 
a total of 277 DEMIs and 50 DEPs were identified 
in osteosarcoma plasma, containing 211 up-regulat-
ed, 66 down-regulated miRNAs and 27 up-regulat-
ed, 23 down-regulated proteins. In the PPI network 

the multivariate Cox regression module were ver-
ified by testing cohort based on 109 patients with-
out gene-expression data from TARGET database 
(Figure 4A). To accelerate the clinical application, 
the expression values of UBE2S and ATXN3 were 
weighted by the multivariate Cox regression coeffi-
cient were transformed into a risk score as follows: 
The risk score = 48*exp (0.5907*expression value 
of UBE2S) + (-1.0533*expression value of ATXN3). 
Multivariate Cox analysis showed that the predictive 
power of ATXN3 in the module was mutually inde-
pendent (Figure 4C). In order to evaluate the pre-
diction efficiency of the Cox model, Concordance 
index (c-index), time-dependent ROC curve (AUC) 
and K-M one-way survival analysis were applied in 
63 patients with complete expression information 
from TARGET database. Notably, the AUCs of the 
time-dependent ROC curves of the COX module 
were 0.97 at 4-year overall-survival, and the p-value 
of the log-rank test at 4-year was lower than 0.0001 
(Figure 4D-E). To investigate the link among risk 
score, overall-survival and biomarkers, we ranked 
patients in ascending order of risk score and dis-

TABLE 3. Overlapped genes between plasma and tumor 
tissue. Totally 11 overlapped DEPs were obtained in prima-
ry OS and 3 DEPs in metastatic OS.

Prim vs. Normal	 Met vs. Prim

PRKCA, DYRK3, HOMER2, 	 UGT3A1, IGF1R, 
TOM1, IRS1, PRKCZ,  	 SLC7A1
IKBKB, CENPB, UBE2S, 
LARP6, ATXN3

Fig. 3. K-M survival analysis of 11 proteins overlapped in plasma and tumor tissue. Low expression of UBE2S is related to poor 
prognosis and p=0.025. High expression of ATXN3 is significantly associated with better overall survival and p=0. 017. 
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biomarkers related to the occurrence and metasta-
sis of OS. Finally, by integrating plasma proteom-
ics/miRNomics, 36 proteins, including MAPK1, 
SMAD2, DYRK3 and PASK, not only show signif-
icant differences in protein expression, but also are 
the target genes of multiple DEMIs, which strongly 
proves their association with OS. Totally 15 pro-
teins, including IGF1R, SLC7A1 and TNIP1, are 
recognized as hub proteins that show significant 
correlation with OS metastasis. 

PRKCA and MAPK1 were seen as core genes by 
MCODE in Cytoscape. MAPK1 (mitogen-activat-
ed protein kinase 1), involving in a wide variety of 
cellular processes such as proliferation, differen-
tiation, transcription regulation and development, 
was found to be significantly targeted by multiple 
DEMIs. Our results are consistent with previous 
reports that overexpression of MAPK1 is related to 
OS26,27. We constructed the miRNA-protein network 
to search for proteins that are most plausible plasma 

Fig. 4.  Sample characteristics and development of the multivariate Cox regression in the TARGET discovery and testing data-
sets. A, Sample characteristics of the multivariate Cox regression. The left is multivariate Cox regression module in discovery 
dataset and the right is characteristics of multivariate Cox regression module in testing dataset. B, Correlation coefficient of 
ATXN3 and UBE2S (cor=0.272). C, Development of DEGs from K-M survival analysis, forest plot of multivariate Cox regres-
sion models in primary OS. D, ROC curve of multivariate Cox regression module. The AUC at 4-year is 0.97. E, Four-year 
survival analysis of OS between high- and low-risk groups stratified by the module in the discovery dataset. 
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DEMIs and 254 DEPs are confirmed, containing 1 
up-regulated, 2 down-regulated miRNAs and 239 
up-regulated, 15 down-regulated proteins. In GO 
analysis, the DEPs were also substantially enriched 
in the Serine/threonine phosphorylation, suggesting 
an important role of these pathways in osteosarco-
ma. Infection and tumor suppressor gene disorder 
related pathways were identified as the most signifi-
cant in KEGG analysis. 

In addition, we analyzed the DEGs, involved in 
miRNA-protein network and expressing the same 
trend in both tumor tissue and plasma, by lasso re-
gression analysis, Kaplan-Meier one-way survival, 
COX and time-dependent ROC methods. The mul-
tivariate Cox module based on ATXN3 and UBE2S, 
which was screened by both lasso regression analysis 
and Kaplan-Meier one-way survival were associated 
with prognosis and the log-rank of Cox model was 
also significant (p=0.003). Notably, the AUCs of the 
time-dependent ROC curves of the module was 0.97 
at 4-year overall-survival, and the p. value of the log-
rank test at 4-year was lower than 0.0001, showing the 
high reliability for prognostic evaluation. Ataxin-3 
(ATXN3), a protein in the Josephin family of deubiq-
uitinases, is involved in neurological dysfunction-re-

As was suggested by pathway enrichment analy-
sis, based on KEGG and Reactome database, genes 
involved in miRNA-protein network demonstrated 
that “Foxo signaling pathway”, “Relaxin signaling 
pathway” and “AGE-RAGE signaling pathway in 
diabetic complications” probably played an import-
ant role in OS occurrence. GO functional analysis 
demonstrated abnormal functions related to Serine/
threonine phosphorylation probably affect the de-
velopment of osteosarcoma. Serine/threonine phos-
phorylation is involved in dozens of human cancers, 
including colon cancer28. Previous researches are 
consistent with our results, serine/threonine kinase 
and its receptor related proteins have also turned out 
to be involved in the development of OS28-31. In or-
der to verify our results, we searched the relevant 
literature from Pubmed. Between primary OS and 
normal, the differential expression of MAPK126,27, 
SMAD232,33, IRS134, SMAD335, MAPK1436, ATF237, 
PDPK138, TTK39, IKBKB40 and CENPB41 have been 
confirmed to be related to OS by previous studies. 
In addition, overexpression of IGF1R42, DDIT443, 
CDC4244 and CDKN1B45 have also been shown to 
play important roles in the metastasis of OS . In 
another group of metastatic OS and primary OS, 3 

Fig. 5. Two-gene prognostic signature biomarker characteristics in the discovery dataset cohort. A, Risk scores distribution in 
discovery cohort. B, Association of clinical characteristics with risk scores with red dots represent alive and blue dots represent 
death. C, Heatmap of the UBE2S and ATXN3 differentially expressed between high- and low-risk, with red indicating higher 
expression and green indicating lower expression.
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result in proliferation of osteosarcoma cells52. In addi-
tion, ATXN3 activates the manganese superoxide dis-
mutase (SOD2) gene by interacting with the forkhead 
box O (FOXO) transcription factor FOXO4, support-
ing that ATXN3 plays an important role in regulating 
the antioxidant stress response via SOD253. Similar to 
our results, high expression of ubiquitin-conjugating 
enzyme E2S (UBE2S), a family of E2 protein in the 
ubaiquitination process, can promote multiple can-
cers progression and symbolizes a poor prognosis54-56. 
Lys11-linked chains are efficient proteasomal degra-
dation signals, assembled by UBE2S specifically and 
cleavage by ATXN357. High expression of UBE2S is 
probably due to the inhibition of ATXN3 by other 
dysregulation. In all, these results are supposed to ex-
plain the disorder of microenvironment in plasma of 
osteosarcoma patients and provide targets for future 
diagnosis, treatment, and prognosis prediction. Fur-
ther investigation for the factors we identified might 
help improve osteosarcoma diagnosis, treatment, and 
prognosis assessment in the future. 

CONCLUSIONS

Our study identified several reliable plasma markers 
for prediction of diagnosis and prognosis in primary 
and metastatic OS patients through bio-informatics 
analysis. Finally, 11 and 3 proteins, selected from 
plasma miRNA-protein network and overlap of tu-
mor tissue and plasma, were potential plasma mark-
ers for diagnosis and metastatic prediction of OS. 
Furthermore, C-index and the AUC at 4 year of Cox 
module were 0. 79 and 0. 97, suggesting indepen-
dent effect of UBE2S and ATXN3 in primary OS. 
The finding may potentially enable more precise 
and personalized cancer treatment in the future. 
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