DETECTION OF MYC REARRANGED BY FLUORESCENCE IN SITU HYBRIDIZATION FISH: A DIAGNOSTIC TOOL

G. AQUINO, L. MARRA, M.P. CURCIO, A. DE CHIARA, G. LIGUORI, R. FRANCO

Pathology Unit, Istituto dei Tumori IRCCS, “Fondazione G. Pascale” Naples, Italy

Abstract: MYC is a potent oncogene and its activation is frequently due by direct gene alteration, such as traslocation and amplification. Originally MYC chromosome translocation t(8;14)(q24;q32) has been considered an hallmark of of Burkitt lymphoma, but later it have been identified in other mature B-cell neoplasms. Detection of translocations involving MYC at 8q24.1 in aggressive B-cell lymphomas is important for diagnostic and prognostic purposes. Therefore, we analyze the genetic aberrations could be applied to a useful Fluorescent In Situ Hybridization (FISH) approach in the diagnosis of these lymphomas.

KEY WORDS: t(8;14) rearrangements, Methods to detect MYC, FISH

INTRODUCTION

C-MYC is a pleiotropic transcription factor belonging to a transcription factors family that includes MYCL (L-Myc) and MYCN (N-Myc). MYC gene is located on 8q24 chromosome and is composed by three exons. It is involved in the regulation of many biological activities, such as differentiation, cell adhesion, apoptosis, angiogenesis, telomerase activity and cell metabolism. Frequently, MYC oncogenic deregulation in cancer is linked to uncontrolled cell proliferation, genomic instability, apoptosis, escape of immune surveillance and cell immortalization. The oncogenic activation of MYC may occur by direct gene alteration, such as traslocation and amplification, or by dysregulation of upstream signaling pathways. Particularly chromosomal translocations involving MYC and the immunoglobulin genes are a recurrent genetic alteration in aggressive B-cell lymphoma such as Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and B-cell lymphoma, unclassifiable (BCLU). Notably, differential diagnosis between this categories, often results difficult and the pathologist requires a molecular approach to support the diagnosis. In the adult, it’s very important distinguish BL from other aggressive B cell-lymphoma, because are clinically different.

The translocation t(8;14) has been described as the most frequent aberration involving Myc gene in BL with the immunoglobulin heavy chain (IGH) gene as partner. Less common aberration involves light chain immunoglobulin genes (IGL or IGK) in the translocations t(2;8) and t(8;22). In addition, the activation of the Myc gene at 8q24 is considered the main pathogenetic feature of BL (90%), but the contribution of other genetic mutations to the disease is an important developing point. In addition MYC translocation is not only specifically observed in BL but it was observed in 5-10% of diffuse large B-cell lymphomas and up to 50% of high-grade B-cell lymphomas other than Burkitt lymphomas. In these tumours, Myc translocations can also involve non-IG partners.
Several studies have been demonstrated distinctive complex karyotypes (CK) in BL and DLBCL but MYC translocation remains the main cytogenetic signature of BL as shown by its routinely use in several diagnostic algorithms. This investigation is fundamental in differential diagnosis with other lymphomas morphologically similar to DLBCL but with atypical immunophenotype or genetic signatures 13-15.

Salaverría et al. proposed a genetic model of pathogenesis of high-grade B cell lymphomas "gray zone", related to genetic aberration and age. They assessed that real adult BLs was very rare and the BL with more genetic alteration is extremely difficult to find. The data show that the distinctive Burkitt feature is represented by its low genomic complexity and by the presence of IG-MYC translocation like a primary event (Single-hit) 16.

Hummel et al. proposed a "BL similarity index", based on the analysis of 58 genes that divided B aggressive Lymphomas in three categories: molecular BL (mBL), intermediate cases, and non molecular Burkitt 17,18. Through this index yet not all cases with morphologic or immunophenotypical features of Burkitt’s lymphoma were classified as mBL. They emphasized that in mature aggressive B-cell lymphomas a MYC-simple group characterized by IG-MYC fusion and a low number of chromosomal imbalances is overlapped with the molecular BL and associated with a favorable clinical outcome. Instead a MYC-complex status is associated with a poor outcome, independently of age and clinical stage corresponding to the intermediate group. Finally, MYC negative group including non molecular Burkitt cases 18.

Naresh et al. proposed a diagnostic approach based on immunohistochemistry and FISH scoring system. Particularly, this method included 3 phases: in the first phase, the scoring is based on morphological features and a small immunohistochemistry panel (BCL2 and CD10). In the second phase, the unresolved cases with intermediate score, should be further scored through a larger panel of immunohistochemistry, such as ki67, CD38 and CD44. Finally, If this phase is uncertain, FISH analysis, including IG-MYC translocation and rearrangements of BCL2 and BCL6 should be crucial to complete the third phase. Through this approach is possible enable to give lead to a precise diagnosis of BL in more than 90% cases 19.

On the basis of current literature, Bellan et al. suggested a practical approach to distinguish among BL, DLBCL and BCLU. They proposed an algorithm for diagnosis of cases with intermediate morphology and CD10%BCL6 expression. In particular, FISH analysis was performed to detect the translocations involving MYC BCL2 and BCL6 through commercially available probes. They argued that BL diagnosis is favored by the presence of IG-MYC rearrangement (simple karyotype). BCLU diagnosis is favored by the presence both MYC and BCL2 rearrangement (complex karyotype), instead the diagnosis of DLBCL is favored by BCL2 and BCL6 rearrangement and MYC negativity 20.

MYC ASSAY IN CLINICAL SETTING

Moreover, MYC rearrangement is associated with unfavorable progression-free survival and overall survival and its identification could stratify a subset of patients who may benefit from alternative treatment strategies 5,21-24. In addition, recently Rituximab has also been introduced for treatment of BL and B aggressive lymphomas. However, several studies have showed that the presence of MYC aberrations identifies a patient subset that requires more aggressive therapy 25,26. Thus, a correct characterization is very important because Myc translocation has not only diagnostic value but it is also a powerful prognostic indicator in several lymphomas.

METHODS TO DETECT MYC TRANSLOCATION

Currently the detection of MYC translocation is performed by several methods such as conventional cytogenetics, Southern blot, and polymerase chain reaction but all these methods can fail to detect IG-MYC fusions 27.

Recently, a novel monoclonal antibody that targets the N terminus of the MYC protein was shown to provide sensitive and specific staining of nuclear MYC in paraffin embedded tissue 28,29.

However, the FISH represents the most robust and reliable method. Therefore, we recommend a FISH approach through four important steps to integrate histological diagnosis. Initially MYC Break Apart probe should be performed on lymphoma cases with increased (>90%) Ki67, to identify all MYC rearranged samples and BCL2 and BCL6 Break Apart probes, will be performed on all negative samples. Afterwards on the Myc positive specimens should be evaluated also the presence of IG-MYC translocation, through the use of a Dual colour dual fusion IGH-MYC probe and IKG and IGL Break Apart probes to distinguish IG-MYC from non IG-MYC translocation. Finally, BCL2 and BCL6 status should be investigated to identify a complex karyotype and additional chromosomal translocation 30. (Figure1)
DETECTION OF MYC REARRANGED BY FLUORESCENCE IN SITU HYBRIDIZATION FISH: A DIAGNOSTIC TOOL

REFERENCES


FISH is suggested to avoid misdiagnosis but it is recommended to integrate with morphologic and immunophenotypic evaluation.

FISH still represents a time-consuming and expensive method instead MYC protein expression by immunohistochemistry could be easily performed in every laboratories. However, not all MYC traslocated aggressive B lymphomas samples showed a significant (>40%) MYC protein staining pattern. Moreover, FISH is unable to detect genetic deregulation that affects gene expression on the transcriptional and translational levels unlike immunohistochemical analysis. Consequently the immunohistochemical evaluation of MYC expression and its therapeutically role should be established through more trials. Although the FISH-based algorithmic approach results an important tool for BL diagnosis, it is not easily accessible in most of the pathology laboratories because it is an expensive and time-consuming method.

CONCLUSION

Currently, MYC antibody is not routinely applied although several large B-cell lymphomas have MYC protein up-regulation independent of gene alterations. In the future, a combined FISH-immunohistochemical score could be introduced in a novel diagnostic algorith for agressive B-Cell Lymphoma.

CONFLICT OF INTEREST:
None declared.

ACKNOWLEDGEMENTS:
The authors are grateful to Dr Aniello Rainone from the Gruppo Oncologico Ricercatori Italiani (GORI) for the bibliography research support.

Figure 1: FISH assay shows in A the MYC locus rearrangement with a break-apart probe (Vysis LSI MYC Dual Color Break Apart Rearrangement Probe Kit). In B IGH/MYC rearrangement with a Dual color dual fusion probe (Vysis IGH/MYC/CEP 8 Tri-Color DF FISH Probe Kit); in C. The amplification of MYC (Vysis IGH/MYC/CEP 8 Tri-Color DF FISH Probe Kit).


